Abstract:In the field of computer vision, data augmentation is widely used to enrich the feature complexity of training datasets with deep learning techniques. However, regarding the generalization capabilities of models, the difference in artificial features generated by data augmentation and natural visual features has not been fully revealed. This study focuses on the visual representation variable 'illumination', by simulating its distribution degradation and examining how data augmentation techniques enhance model performance on a classification task. Our goal is to investigate the differences in generalization between models trained with augmented data and those trained under real-world illumination conditions. Results indicate that after undergoing various data augmentation methods, model performance has been significantly improved. Yet, a noticeable generalization gap still exists after utilizing various data augmentation methods, emphasizing the critical role of feature diversity in the training set for enhancing model generalization.
Abstract:In this work, we propose a novel staged depthwise correlation and feature fusion network, named DCFFNet, to further optimize the feature extraction for visual tracking. We build our deep tracker upon a siamese network architecture, which is offline trained from scratch on multiple large-scale datasets in an end-to-end manner. The model contains a core component, that is, depthwise correlation and feature fusion module (correlation-fusion module), which facilitates model to learn a set of optimal weights for a specific object by utilizing ensembles of multi-level features from lower and higher layers and multi-channel semantics on the same layer. We combine the modified ResNet-50 with the proposed correlation-fusion layer to constitute the feature extractor of our model. In training process, we find the training of model become more stable, that benifits from the correlation-fusion module. For comprehensive evaluations of performance, we implement our tracker on the popular benchmarks, including OTB100, VOT2018 and LaSOT. Extensive experiment results demonstrate that our proposed method achieves favorably competitive performance against many leading trackers in terms of accuracy and precision, while satisfying the real-time requirements of applications.