Abstract:Dynamic sequential recommendation (DSR) can generate model parameters based on user behavior to improve the personalization of sequential recommendation under various user preferences. However, it faces the challenges of large parameter search space and sparse and noisy user-item interactions, which reduces the applicability of the generated model parameters. The Semantic Codebook Learning for Dynamic Recommendation Models (SOLID) framework presents a significant advancement in DSR by effectively tackling these challenges. By transforming item sequences into semantic sequences and employing a dual parameter model, SOLID compresses the parameter generation search space and leverages homogeneity within the recommendation system. The introduction of the semantic metacode and semantic codebook, which stores disentangled item representations, ensures robust and accurate parameter generation. Extensive experiments demonstrates that SOLID consistently outperforms existing DSR, delivering more accurate, stable, and robust recommendations.
Abstract:Due to the continuously improving capabilities of mobile edges, recommender systems start to deploy models on edges to alleviate network congestion caused by frequent mobile requests. Several studies have leveraged the proximity of edge-side to real-time data, fine-tuning them to create edge-specific models. Despite their significant progress, these methods require substantial on-edge computational resources and frequent network transfers to keep the model up to date. The former may disrupt other processes on the edge to acquire computational resources, while the latter consumes network bandwidth, leading to a decrease in user satisfaction. In response to these challenges, we propose a customizeD slImming framework for incompatiblE neTworks(DIET). DIET deploys the same generic backbone (potentially incompatible for a specific edge) to all devices. To minimize frequent bandwidth usage and storage consumption in personalization, DIET tailors specific subnets for each edge based on its past interactions, learning to generate slimming subnets(diets) within incompatible networks for efficient transfer. It also takes the inter-layer relationships into account, empirically reducing inference time while obtaining more suitable diets. We further explore the repeated modules within networks and propose a more storage-efficient framework, DIETING, which utilizes a single layer of parameters to represent the entire network, achieving comparably excellent performance. The experiments across four state-of-the-art datasets and two widely used models demonstrate the superior accuracy in recommendation and efficiency in transmission and storage of our framework.
Abstract:Revolutionary advancements in text-to-image models have unlocked new dimensions for sophisticated content creation, e.g., text-conditioned image editing, allowing us to edit the diverse images that convey highly complex visual concepts according to the textual guidance. Despite being promising, existing methods focus on texture- or non-rigid-based visual manipulation, which struggles to produce the fine-grained animation of smooth text-conditioned image morphing without fine-tuning, i.e., due to their highly unstructured latent space. In this paper, we introduce a tuning-free LLM-driven attention control framework, encapsulated by the progressive process of LLM planning, prompt-Aware editing, StablE animation geneRation, abbreviated as LASER. LASER employs a large language model (LLM) to refine coarse descriptions into detailed prompts, guiding pre-trained text-to-image models for subsequent image generation. We manipulate the model's spatial features and self-attention mechanisms to maintain animation integrity and enable seamless morphing directly from text prompts, eliminating the need for additional fine-tuning or annotations. Our meticulous control over spatial features and self-attention ensures structural consistency in the images. This paper presents a novel framework integrating LLMs with text-to-image models to create high-quality animations from a single text input. We also propose a Text-conditioned Image-to-Animation Benchmark to validate the effectiveness and efficacy of LASER. Extensive experiments demonstrate that LASER produces impressive, consistent, and efficient results in animation generation, positioning it as a powerful tool for advanced digital content creation.
Abstract:Recent advancements indicate that scaling up Multimodal Large Language Models (MLLMs) effectively enhances performance on downstream multimodal tasks. The prevailing MLLM paradigm, \emph{e.g.}, LLaVA, transforms visual features into text-like tokens using a \emph{static} vision-language mapper, thereby enabling \emph{static} LLMs to develop the capability to comprehend visual information through visual instruction tuning. Although promising, the \emph{static} tuning strategy~\footnote{The static tuning refers to the trained model with static parameters.} that shares the same parameters may constrain performance across different downstream multimodal tasks. In light of this, we introduce HyperLLaVA, which involves adaptive tuning of the projector and LLM parameters, in conjunction with a dynamic visual expert and language expert, respectively. These experts are derived from HyperNetworks, which generates adaptive parameter shifts through visual and language guidance, enabling dynamic projector and LLM modeling in two-stage training. Our experiments demonstrate that our solution significantly surpasses LLaVA on existing MLLM benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench. ~\footnote{Our project is available on the link https://github.com/DCDmllm/HyperLLaVA}.
Abstract:Due to privacy or patent concerns, a growing number of large models are released without granting access to their training data, making transferring their knowledge inefficient and problematic. In response, Data-Free Knowledge Distillation (DFKD) methods have emerged as direct solutions. However, simply adopting models derived from DFKD for real-world applications suffers significant performance degradation, due to the discrepancy between teachers' training data and real-world scenarios (student domain). The degradation stems from the portions of teachers' knowledge that are not applicable to the student domain. They are specific to the teacher domain and would undermine students' performance. Hence, selectively transferring teachers' appropriate knowledge becomes the primary challenge in DFKD. In this work, we propose a simple but effective method AuG-KD. It utilizes an uncertainty-guided and sample-specific anchor to align student-domain data with the teacher domain and leverages a generative method to progressively trade off the learning process between OOD knowledge distillation and domain-specific information learning via mixup learning. Extensive experiments in 3 datasets and 8 settings demonstrate the stability and superiority of our approach. Code available at https://github.com/IshiKura-a/AuG-KD .
Abstract:The rapid advancement of Large Language Models (LLMs) has revolutionized various sectors by automating routine tasks, marking a step toward the realization of Artificial General Intelligence (AGI). However, they still struggle to accommodate the diverse and specific needs of users and simplify the utilization of AI models for the average user. In response, we propose ModelGPT, a novel framework designed to determine and generate AI models specifically tailored to the data or task descriptions provided by the user, leveraging the capabilities of LLMs. Given user requirements, ModelGPT is able to provide tailored models at most 270x faster than the previous paradigms (e.g. all-parameter or LoRA finetuning). Comprehensive experiments on NLP, CV, and Tabular datasets attest to the effectiveness of our framework in making AI models more accessible and user-friendly. Our code is available at https://github.com/IshiKura-a/ModelGPT.
Abstract:Graph Neural Networks (GNNs) show promising results for graph tasks. However, existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data. The cardinal impetus underlying the severe degeneration is that the GNNs are architected predicated upon the I.I.D assumptions. In such a setting, GNNs are inclined to leverage imperceptible statistical correlations subsisting in the training set to predict, albeit it is a spurious correlation. In this paper, we study the problem of the generalization ability of GNNs in Out-Of-Distribution (OOD) settings. To solve this problem, we propose the Learning to Reweight for Generalizable Graph Neural Network (L2R-GNN) to enhance the generalization ability for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs. We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability and compares favorably to previous methods in restraining the over-reduced sample size. The variables of the graph representation are clustered based on the stability of the correlation, and the graph decorrelation method learns weights to remove correlations between the variables of different clusters rather than any two variables. Besides, we interpose an efficacious stochastic algorithm upon bi-level optimization for the L2R-GNN framework, which facilitates simultaneously learning the optimal weights and GNN parameters, and avoids the overfitting problem. Experimental results show that L2R-GNN greatly outperforms baselines on various graph prediction benchmarks under distribution shifts.
Abstract:Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.This setting neglects the more practical scenario where training data are collected from multiple sources. This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains, termed Multi-source Active Domain Adaptation (MADA). Not surprisingly, we find that most traditional ADA methods cannot work directly in such a setting, mainly due to the excessive domain gap introduced by all the source domains and thus their uncertainty-aware sample selection can easily become miscalibrated under the multi-domain shifts. Considering this, we propose a Dynamic integrated uncertainty valuation framework(Detective) that comprehensively consider the domain shift between multi-source domains and target domain to detect the informative target samples. Specifically, the leverages a dynamic Domain Adaptation(DA) model that learns how to adapt the model's parameters to fit the union of multi-source domains. This enables an approximate single-source domain modeling by the dynamic model. We then comprehensively measure both domain uncertainty and predictive uncertainty in the target domain to detect informative target samples using evidential deep learning, thereby mitigating uncertainty miscalibration. Furthermore, we introduce a contextual diversity-aware calculator to enhance the diversity of the selected samples. Experiments demonstrate that our solution outperforms existing methods by a considerable margin on three domain adaptation benchmarks.
Abstract:Recommendation systems have shown great potential to solve the information explosion problem and enhance user experience in various online applications, which recently present two emerging trends: (i) Collaboration: single-sided model trained on-cloud (separate learning) to the device-cloud collaborative recommendation (collaborative learning). (ii) Real-time Dynamic: the network parameters are the same across all the instances (static model) to adaptive network parameters generation conditioned on the real-time instances (dynamic model). The aforementioned two trends enable the device-cloud collaborative and dynamic recommendation, which deeply exploits the recommendation pattern among cloud-device data and efficiently characterizes different instances with different underlying distributions based on the cost of frequent device-cloud communication. Despite promising, we argue that most of the communications are unnecessary to request the new parameters of the recommendation system on the cloud since the on-device data distribution are not always changing. To alleviate this issue, we designed a Intelligent DEvice-Cloud PArameter Request ModeL (IDEAL) that can be deployed on the device to calculate the request revenue with low resource consumption, so as to ensure the adaptive device-cloud communication with high revenue. We envision a new device intelligence learning task to implement IDEAL by detecting the data out-of-domain. Moreover, we map the user's real-time behavior to a normal distribution, the uncertainty is calculated by the multi-sampling outputs to measure the generalization ability of the device model to the current user behavior. Our experimental study demonstrates IDEAL's effectiveness and generalizability on four public benchmarks, which yield a higher efficient device-cloud collaborative and dynamic recommendation paradigm.
Abstract:Deploying machine learning models on mobile devices has gained increasing attention. To tackle the model generalization problem with the limitations of hardware resources on the device, the device model needs to be lightweight by techniques such as model compression from the cloud model. However, the major obstacle to improve the device model generalization is the distribution shift between the data of cloud and device models, since the data distribution on device model often changes over time (e.g., users might have different preferences in recommendation system). Although real-time fine-tuning and distillation method take this situation into account, these methods require on-device training, which are practically infeasible due to the low computational power and a lack of real-time labeled samples on the device. In this paper, we propose a novel task-agnostic framework, named MetaNetwork, for generating adaptive device model parameters from cloud without on-device training. Specifically, our MetaNetwork is deployed on cloud and consists of MetaGenerator and MetaStabilizer modules. The MetaGenerator is designed to learn a mapping function from samples to model parameters, and it can generate and deliver the adaptive parameters to the device based on samples uploaded from the device to the cloud. The MetaStabilizer aims to reduce the oscillation of the MetaGenerator, accelerate the convergence and improve the model performance during both training and inference. We evaluate our method on two tasks with three datasets. Extensive experiments show that MetaNetwork can achieve competitive performances in different modalities.