Abstract:In cloud-centric recommender system, regular data exchanges between user devices and cloud could potentially elevate bandwidth demands and privacy risks. On-device recommendation emerges as a viable solution by performing reranking locally to alleviate these concerns. Existing methods primarily focus on developing local adaptive parameters, while potentially neglecting the critical role of tailor-made model architecture. Insights from broader research domains suggest that varying data distributions might favor distinct architectures for better fitting. In addition, imposing a uniform model structure across heterogeneous devices may result in risking inefficacy on less capable devices or sub-optimal performance on those with sufficient capabilities. In response to these gaps, our paper introduces Forward-OFA, a novel approach for the dynamic construction of device-specific networks (both structure and parameters). Forward-OFA employs a structure controller to selectively determine whether each block needs to be assembled for a given device. However, during the training of the structure controller, these assembled heterogeneous structures are jointly optimized, where the co-adaption among blocks might encounter gradient conflicts. To mitigate this, Forward-OFA is designed to establish a structure-guided mapping of real-time behaviors to the parameters of assembled networks. Structure-related parameters and parallel components within the mapper prevent each part from receiving heterogeneous gradients from others, thus bypassing the gradient conflicts for coupled optimization. Besides, direct mapping enables Forward-OFA to achieve adaptation through only one forward pass, allowing for swift adaptation to changing interests and eliminating the requirement for on-device backpropagation. Experiments on real-world datasets demonstrate the effectiveness and efficiency of Forward-OFA.
Abstract:Due to the continuously improving capabilities of mobile edges, recommender systems start to deploy models on edges to alleviate network congestion caused by frequent mobile requests. Several studies have leveraged the proximity of edge-side to real-time data, fine-tuning them to create edge-specific models. Despite their significant progress, these methods require substantial on-edge computational resources and frequent network transfers to keep the model up to date. The former may disrupt other processes on the edge to acquire computational resources, while the latter consumes network bandwidth, leading to a decrease in user satisfaction. In response to these challenges, we propose a customizeD slImming framework for incompatiblE neTworks(DIET). DIET deploys the same generic backbone (potentially incompatible for a specific edge) to all devices. To minimize frequent bandwidth usage and storage consumption in personalization, DIET tailors specific subnets for each edge based on its past interactions, learning to generate slimming subnets(diets) within incompatible networks for efficient transfer. It also takes the inter-layer relationships into account, empirically reducing inference time while obtaining more suitable diets. We further explore the repeated modules within networks and propose a more storage-efficient framework, DIETING, which utilizes a single layer of parameters to represent the entire network, achieving comparably excellent performance. The experiments across four state-of-the-art datasets and two widely used models demonstrate the superior accuracy in recommendation and efficiency in transmission and storage of our framework.