Abstract:This paper explores the application and effectiveness of Test-Time Training (TTT) layers in improving the performance of recommendation systems. We developed a model, TTT4Rec, utilizing TTT-Linear as the feature extraction layer. Our tests across multiple datasets indicate that TTT4Rec, as a base model, performs comparably or even surpasses other baseline models in similar environments.
Abstract:Dynamic sequential recommendation (DSR) can generate model parameters based on user behavior to improve the personalization of sequential recommendation under various user preferences. However, it faces the challenges of large parameter search space and sparse and noisy user-item interactions, which reduces the applicability of the generated model parameters. The Semantic Codebook Learning for Dynamic Recommendation Models (SOLID) framework presents a significant advancement in DSR by effectively tackling these challenges. By transforming item sequences into semantic sequences and employing a dual parameter model, SOLID compresses the parameter generation search space and leverages homogeneity within the recommendation system. The introduction of the semantic metacode and semantic codebook, which stores disentangled item representations, ensures robust and accurate parameter generation. Extensive experiments demonstrates that SOLID consistently outperforms existing DSR, delivering more accurate, stable, and robust recommendations.
Abstract:In this study, we focus on heterogeneous knowledge transfer across entirely different model architectures, tasks, and modalities. Existing knowledge transfer methods (e.g., backbone sharing, knowledge distillation) often hinge on shared elements within model structures or task-specific features/labels, limiting transfers to complex model types or tasks. To overcome these challenges, we present MergeNet, which learns to bridge the gap of parameter spaces of heterogeneous models, facilitating the direct interaction, extraction, and application of knowledge within these parameter spaces. The core mechanism of MergeNet lies in the parameter adapter, which operates by querying the source model's low-rank parameters and adeptly learning to identify and map parameters into the target model. MergeNet is learned alongside both models, allowing our framework to dynamically transfer and adapt knowledge relevant to the current stage, including the training trajectory knowledge of the source model. Extensive experiments on heterogeneous knowledge transfer demonstrate significant improvements in challenging settings, where representative approaches may falter or prove less applicable.