Abstract:Foundation models (FMs) such as GPT-4 exhibit exceptional generative capabilities across diverse downstream tasks through fine-tuning. Split Federated Learning (SFL) facilitates privacy-preserving FM fine-tuning on resource-constrained local devices by offloading partial FM computations to edge servers, enabling device-edge synergistic fine-tuning. Practical edge networks often host multiple SFL tenants to support diversified downstream tasks. However, existing research primarily focuses on single-tenant SFL scenarios, and lacks tailored incentive mechanisms for multi-tenant settings, which are essential to effectively coordinate self-interested local devices for participation in various downstream tasks, ensuring that each SFL tenant's distinct FM fine-tuning requirements (e.g., FM types, performance targets, and fine-tuning deadlines) are met. To address this gap, we propose a novel Price-Incentive Mechanism (PRINCE) that guides multiple SFL tenants to offer strategic price incentives, which solicit high-quality device participation for efficient FM fine-tuning. Specifically, we first develop a bias-resilient global SFL model aggregation scheme to eliminate model biases caused by independent device participation. We then derive a rigorous SFL convergence bound to evaluate the contributions of heterogeneous devices to FM performance improvements, guiding the incentive strategies of SFL tenants. Furthermore, we model inter-tenant device competition as a congestion game for Stackelberg equilibrium (SE) analysis, deriving each SFL tenant's optimal incentive strategy. Extensive simulations involving four representative SFL tenant types (ViT, BERT, Whisper, and LLaMA) across diverse data modalities (text, images, and audio) demonstrate that PRINCE accelerates FM fine-tuning by up to 3.07x compared to state-of-the-art approaches, while consistently meeting fine-tuning performance targets.
Abstract:The convergence of edge computing and AI gives rise to Edge-AI, which enables the deployment of real-time AI applications and services at the network edge. One of the fundamental research issues in Edge-AI is edge inference acceleration, which aims to realize low-latency high-accuracy DNN inference services by leveraging the fine-grained offloading of partitioned inference tasks from end devices to edge servers. However, existing research has yet to adopt a practical Edge-AI market perspective, which would systematically explore the personalized inference needs of AI users (e.g., inference accuracy, latency, and task complexity), the revenue incentives for AI service providers that offer edge inference services, and multi-stakeholder governance within a market-oriented context. To bridge this gap, we propose an Auction-based Edge Inference Pricing Mechanism (AERIA) for revenue maximization to tackle the multi-dimensional optimization problem of DNN model partition, edge inference pricing, and resource allocation. We investigate the multi-exit device-edge synergistic inference scheme for on-demand DNN inference acceleration, and analyse the auction dynamics amongst the AI service providers, AI users and edge infrastructure provider. Owing to the strategic mechanism design via randomized consensus estimate and cost sharing techniques, the Edge-AI market attains several desirable properties, including competitiveness in revenue maximization, incentive compatibility, and envy-freeness, which are crucial to maintain the effectiveness, truthfulness, and fairness of our auction outcomes. The extensive simulation experiments based on four representative DNN inference workloads demonstrate that our AERIA mechanism significantly outperforms several state-of-the-art approaches in revenue maximization, demonstrating the efficacy of AERIA for on-demand DNN inference in the Edge-AI market.
Abstract:Pre-trained Language Models (PLMs) have demonstrated their superiority and versatility in modern Natural Language Processing (NLP), effectively adapting to various downstream tasks through further fine-tuning. Federated Parameter-Efficient Fine-Tuning (FedPEFT) has emerged as a promising solution to address privacy and efficiency challenges in distributed training for PLMs on mobile devices. However, our measurements reveal two key limitations of FedPEFT: heterogeneous data leads to significant performance degradation, and a fixed parameter configuration results in communication inefficiency. To overcome these limitations, we propose FedARA, a novel Federated Adaptive Rank Allocation for parameter-efficient fine-tuning of language models. Specifically, FedARA employs truncated singular value decomposition (SVD) adaptation to enhance flexibility and expressiveness, significantly mitigating the adverse effects of data heterogeneity. Subsequently, it utilizes dynamic rank allocation to progressively identify critical ranks, effectively improving communication efficiency. Lastly, it leverages rank-based module pruning to remove inactive modules, steadily reducing local training time and peak memory usage in each round. Extensive experiments show that FedARA consistently outperforms weak baselines by an average of 8.49\% and strong baselines by 6.95\% across various datasets under data heterogeneity while significantly improving communication efficiency by 2.40\(\times\). Moreover, experiments on AGX Orin, Orin Nano and Raspberry Pi 5 devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90\% and 46.95\%, respectively.
Abstract:Edge-AI, the convergence of edge computing and artificial intelligence (AI), has become a promising paradigm that enables the deployment of advanced AI models at the network edge, close to users. In Edge-AI, federated continual learning (FCL) has emerged as an imperative framework, which fuses knowledge from different clients while preserving data privacy and retaining knowledge from previous tasks as it learns new ones. By so doing, FCL aims to ensure stable and reliable performance of learning models in dynamic and distributed environments. In this survey, we thoroughly review the state-of-the-art research and present the first comprehensive survey of FCL for Edge-AI. We categorize FCL methods based on three task characteristics: federated class continual learning, federated domain continual learning, and federated task continual learning. For each category, an in-depth investigation and review of the representative methods are provided, covering background, challenges, problem formalisation, solutions, and limitations. Besides, existing real-world applications empowered by FCL are reviewed, indicating the current progress and potential of FCL in diverse application domains. Furthermore, we discuss and highlight several prospective research directions of FCL such as algorithm-hardware co-design for FCL and FCL with foundation models, which could provide insights into the future development and practical deployment of FCL in the era of Edge-AI.
Abstract:The integration of autonomous driving technologies with vehicular networks presents significant challenges in privacy preservation, communication efficiency, and resource allocation. This paper proposes a novel U-shaped split federated learning (U-SFL) framework to address these challenges on the way of realizing in vehicular edge networks. U-SFL is able to enhance privacy protection by keeping both raw data and labels on the vehicular user (VU) side while enabling parallel processing across multiple vehicles. To optimize communication efficiency, we introduce a semantic-aware auto-encoder (SAE) that significantly reduces the dimensionality of transmitted data while preserving essential semantic information. Furthermore, we develop a deep reinforcement learning (DRL) based algorithm to solve the NP-hard problem of dynamic resource allocation and split point selection. Our comprehensive evaluation demonstrates that U-SFL achieves comparable classification performance to traditional split learning (SL) while substantially reducing data transmission volume and communication latency. The proposed DRL-based optimization algorithm shows good convergence in balancing latency, energy consumption, and learning performance.
Abstract:With the proliferation of location-aware devices, large amount of trajectories have been generated when agents such as people, vehicles and goods flow around the urban environment. These raw trajectories, typically collected from various sources such as GPS in cars, personal mobile devices, and public transport, are often sparse and fragmented due to limited sampling rates, infrastructure coverage and data loss. In this context, trajectory recovery aims to reconstruct such sparse raw trajectories into their dense and continuous counterparts, so that fine-grained movement of agents across space and time can be captured faithfully. Existing trajectory recovery approaches typically rely on the prior knowledge of travel mode or motion patterns, and often fail in densely populated urban areas where accurate maps are absent. In this paper, we present a new recovery framework called TrajWeaver based on probabilistic diffusion models, which is able to recover dense and refined trajectories from the sparse raw ones, conditioned on various auxiliary features such as Areas of Interest along the way, user identity and waybill information. The core of TrajWeaver is a novel State Propagation Diffusion Model (SPDM), which introduces a new state propagation mechanism on top of the standard diffusion models, so that knowledge computed in earlier diffusion steps can be reused later, improving the recovery performance while reducing the number of steps needed. Extensive experiments show that the proposed TrajWeaver can recover from raw trajectories of various lengths, sparsity levels and heterogeneous travel modes, and outperform the state-of-the-art baselines significantly in recovery accuracy. Our code is available at: https://anonymous.4open.science/r/TrajWeaver/
Abstract:Federated Graph Learning (FGL) has garnered widespread attention by enabling collaborative training on multiple clients for semi-supervised classification tasks. However, most existing FGL studies do not well consider the missing inter-client topology information in real-world scenarios, causing insufficient feature aggregation of multi-hop neighbor clients during model training. Moreover, the classic FGL commonly adopts the FedAvg but neglects the high training costs when the number of clients expands, resulting in the overload of a single edge server. To address these important challenges, we propose a novel FGL framework, named SpreadFGL, to promote the information flow in edge-client collaboration and extract more generalized potential relationships between clients. In SpreadFGL, an adaptive graph imputation generator incorporated with a versatile assessor is first designed to exploit the potential links between subgraphs, without sharing raw data. Next, a new negative sampling mechanism is developed to make SpreadFGL concentrate on more refined information in downstream tasks. To facilitate load balancing at the edge layer, SpreadFGL follows a distributed training manner that enables fast model convergence. Using real-world testbed and benchmark graph datasets, extensive experiments demonstrate the effectiveness of the proposed SpreadFGL. The results show that SpreadFGL achieves higher accuracy and faster convergence against state-of-the-art algorithms.
Abstract:Being an up-and-coming application scenario of mobile edge computing (MEC), the post-disaster rescue suffers multitudinous computing-intensive tasks but unstably guaranteed network connectivity. In rescue environments, quality of service (QoS), such as task execution delay, energy consumption and battery state of health (SoH), is of significant meaning. This paper studies a multi-user post-disaster MEC environment with unstable 5G communication, where device-to-device (D2D) link communication and dynamic voltage and frequency scaling (DVFS) are adopted to balance each user's requirement for task delay and energy consumption. A battery degradation evaluation approach to prolong battery lifetime is also presented. The distributed optimization problem is formulated into a mixed cooperative-competitive (MCC) multi-agent Markov decision process (MAMDP) and is tackled with recurrent multi-agent Proximal Policy Optimization (rMAPPO). Extensive simulations and comprehensive comparisons with other representative algorithms clearly demonstrate the effectiveness of the proposed rMAPPO-based offloading scheme.
Abstract:In Federated Learning (FL) client devices connected over the internet collaboratively train a machine learning model without sharing their private data with a central server or with other clients. The seminal Federated Averaging (FedAvg) algorithm trains a single global model by performing rounds of local training on clients followed by model averaging. FedAvg can improve the communication-efficiency of training by performing more steps of Stochastic Gradient Descent (SGD) on clients in each round. However, client data in real-world FL is highly heterogeneous, which has been extensively shown to slow model convergence and harm final performance when $K > 1$ steps of SGD are performed on clients per round. In this work we propose decaying $K$ as training progresses, which can jointly improve the final performance of the FL model whilst reducing the wall-clock time and the total computational cost of training compared to using a fixed $K$. We analyse the convergence of FedAvg with decaying $K$ for strongly-convex objectives, providing novel insights into the convergence properties, and derive three theoretically-motivated decay schedules for $K$. We then perform thorough experiments on four benchmark FL datasets (FEMNIST, CIFAR100, Sentiment140, Shakespeare) to show the real-world benefit of our approaches in terms of real-world convergence time, computational cost, and generalisation performance.
Abstract:Verification plays an essential role in the formal analysis of safety-critical systems. Most current verification methods have specific requirements when working on Deep Neural Networks (DNNs). They either target one particular network category, e.g., Feedforward Neural Networks (FNNs), or networks with specific activation functions, e.g., RdLU. In this paper, we develop a model-agnostic verification framework, called DeepAgn, and show that it can be applied to FNNs, Recurrent Neural Networks (RNNs), or a mixture of both. Under the assumption of Lipschitz continuity, DeepAgn analyses the reachability of DNNs based on a novel optimisation scheme with a global convergence guarantee. It does not require access to the network's internal structures, such as layers and parameters. Through reachability analysis, DeepAgn can tackle several well-known robustness problems, including computing the maximum safe radius for a given input, and generating the ground-truth adversarial examples. We also empirically demonstrate DeepAgn's superior capability and efficiency in handling a broader class of deep neural networks, including both FNNs, and RNNs with very deep layers and millions of neurons, than other state-of-the-art verification approaches.