Abstract:Although Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data, they invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images. Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information that appropriately widens the contrastive logits gap between hallucinatory and targeted ones. However, due to uncontrollable nature of the global visual uncertainty, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations and may even lead to the generation of undesired hallucinations. To tackle this issue, we conducted the theoretical analysis to promote the effectiveness of contrast decoding. Building on this insight, we introduce a novel optimization strategy named Hallucination-Induced Optimization (HIO). This strategy seeks to amplify the contrast between hallucinatory and targeted tokens relying on a fine-tuned theoretical preference model (i.e., Contrary Bradley-Terry Model), thereby facilitating efficient contrast decoding to alleviate hallucinations in LVLMs. Extensive experimental research demonstrates that our HIO strategy can effectively reduce hallucinations in LVLMs, outperforming state-of-the-art methods across various benchmarks.
Abstract:Existing methods of multiple human parsing (MHP) apply statistical models to acquire underlying associations between images and labeled body parts. However, acquired associations often contain many spurious correlations that degrade model generalization, leading statistical models to be vulnerable to visually contextual variations in images (e.g., unseen image styles/external interventions). To tackle this, we present a causality inspired parsing paradigm termed CIParsing, which follows fundamental causal principles involving two causal properties for human parsing (i.e., the causal diversity and the causal invariance). Specifically, we assume that an input image is constructed by a mix of causal factors (the characteristics of body parts) and non-causal factors (external contexts), where only the former ones cause the generation process of human parsing.Since causal/non-causal factors are unobservable, a human parser in proposed CIParsing is required to construct latent representations of causal factors and learns to enforce representations to satisfy the causal properties. In this way, the human parser is able to rely on causal factors w.r.t relevant evidence rather than non-causal factors w.r.t spurious correlations, thus alleviating model degradation and yielding improved parsing ability. Notably, the CIParsing is designed in a plug-and-play fashion and can be integrated into any existing MHP models. Extensive experiments conducted on two widely used benchmarks demonstrate the effectiveness and generalizability of our method.