Abstract:Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
Abstract:Recent years have witnessed a significant interest in developing large multimodal models (LMMs) capable of performing various visual reasoning and understanding tasks. This has led to the introduction of multiple LMM benchmarks to evaluate LMMs on different tasks. However, most existing LMM evaluation benchmarks are predominantly English-centric. In this work, we develop a comprehensive LMM evaluation benchmark for the Arabic language to represent a large population of over 400 million speakers. The proposed benchmark, named CAMEL-Bench, comprises eight diverse domains and 38 sub-domains including, multi-image understanding, complex visual perception, handwritten document understanding, video understanding, medical imaging, plant diseases, and remote sensing-based land use understanding to evaluate broad scenario generalizability. Our CAMEL-Bench comprises around 29,036 questions that are filtered from a larger pool of samples, where the quality is manually verified by native speakers to ensure reliable model assessment. We conduct evaluations of both closed-source, including GPT-4 series, and open-source LMMs. Our analysis reveals the need for substantial improvement, especially among the best open-source models, with even the closed-source GPT-4o achieving an overall score of 62%. Our benchmark and evaluation scripts are open-sourced.
Abstract:We introduce a novel bilateral reference framework (***BiRefNet***) for high-resolution dichotomous image segmentation (DIS). It comprises two essential components: the localization module (LM) and the reconstruction module (RM) with our proposed bilateral reference (BiRef). The LM aids in object localization using global semantic information. Within the RM, we utilize BiRef for the reconstruction process, where hierarchical patches of images provide the source reference and gradient maps serve as the target reference. These components collaborate to generate the final predicted maps. We also introduce auxiliary gradient supervision to enhance focus on regions with finer details. Furthermore, we outline practical training strategies tailored for DIS to improve map quality and training process. To validate the general applicability of our approach, we conduct extensive experiments on four tasks to evince that *BiRefNet* exhibits remarkable performance, outperforming task-specific cutting-edge methods across all benchmarks.
Abstract:Conventional feature extraction techniques in the face anti-spoofing domain either analyze the entire video sequence or focus on a specific segment to improve model performance. However, identifying the optimal frames that provide the most valuable input for the face anti-spoofing remains a challenging task. In this paper, we address this challenge by employing Gaussian weighting to create apex frames for videos. Specifically, an apex frame is derived from a video by computing a weighted sum of its frames, where the weights are determined using a Gaussian distribution centered around the video's central frame. Furthermore, we explore various temporal lengths to produce multiple unlabeled apex frames using a Gaussian function, without the need for convolution. By doing so, we leverage the benefits of semi-supervised learning, which considers both labeled and unlabeled apex frames to effectively discriminate between live and spoof classes. Our key contribution emphasizes the apex frame's capacity to represent the most significant moments in the video, while unlabeled apex frames facilitate efficient semi-supervised learning, as they enable the model to learn from videos of varying temporal lengths. Experimental results using four face anti-spoofing databases: CASIA, REPLAY-ATTACK, OULU-NPU, and MSU-MFSD demonstrate the apex frame's efficacy in advancing face anti-spoofing techniques.
Abstract:Due to the growing availability of face anti-spoofing databases, researchers are increasingly focusing on video-based methods that use hundreds to thousands of images to assess their impact on performance. However, there is no clear consensus on the exact number of frames in a video required to improve the performance of face anti-spoofing tasks. Inspired by the visual saliency theory, we present a video summarization method for face anti-spoofing tasks that aims to enhance the performance and efficiency of deep learning models by leveraging visual saliency. In particular, saliency information is extracted from the differences between the Laplacian and Wiener filter outputs of the source images, enabling identification of the most visually salient regions within each frame. Subsequently, the source images are decomposed into base and detail layers, enhancing representation of important information. The weighting maps are then computed based on the saliency information, indicating the importance of each pixel in the image. By linearly combining the base and detail layers using the weighting maps, the method fuses the source images to create a single representative image that summarizes the entire video. The key contribution of our proposed method lies in demonstrating how visual saliency can be used as a data-centric approach to improve the performance and efficiency of face presentation attack detection models. By focusing on the most salient images or regions within the images, a more representative and diverse training set can be created, potentially leading to more effective models. To validate the method's effectiveness, a simple deep learning architecture (CNN-RNN) was used, and the experimental results showcased state-of-the-art performance on five challenging face anti-spoofing datasets.
Abstract:Vision-language (VL) Pre-training (VLP) has shown to well generalize VL models over a wide range of VL downstream tasks, especially for cross-modal retrieval. However, it hinges on a huge amount of image-text pairs, which requires tedious and costly curation. On the contrary, weakly-supervised VLP (W-VLP) explores means with object tags generated by a pre-trained object detector (OD) from images. Yet, they still require paired information, i.e. images and object-level annotations, as supervision to train an OD. To further reduce the amount of supervision, we propose Prompts-in-The-Loop (PiTL) that prompts knowledge from large language models (LLMs) to describe images. Concretely, given a category label of an image, e.g. refinery, the knowledge, e.g. a refinery could be seen with large storage tanks, pipework, and ..., extracted by LLMs is used as the language counterpart. The knowledge supplements, e.g. the common relations among entities most likely appearing in a scene. We create IN14K, a new VL dataset of 9M images and 1M descriptions of 14K categories from ImageNet21K with PiTL. Empirically, the VL models pre-trained with PiTL-generated pairs are strongly favored over other W-VLP works on image-to-text (I2T) and text-to-image (T2I) retrieval tasks, with less supervision. The results reveal the effectiveness of PiTL-generated pairs for VLP.
Abstract:Face presentation attacks (PA), also known as spoofing attacks, pose a substantial threat to biometric systems that rely on facial recognition systems, such as access control systems, mobile payments, and identity verification systems. To mitigate the spoofing risk, several video-based methods have been presented in the literature that analyze facial motion in successive video frames. However, estimating the motion between adjacent frames is a challenging task and requires high computational cost. In this paper, we rephrase the face anti-spoofing task as a motion prediction problem and introduce a deep ensemble learning model with a frame skipping mechanism. In particular, the proposed frame skipping adopts a uniform sampling approach by dividing the original video into video clips of fixed size. By doing so, every nth frame of the clip is selected to ensure that the temporal patterns can easily be perceived during the training of three different recurrent neural networks (RNNs). Motivated by the performance of individual RNNs, a meta-model is developed to improve the overall detection performance by combining the prediction of individual RNNs. Extensive experiments were performed on four datasets, and state-of-the-art performance is reported on MSU-MFSD (3.12%), Replay-Attack (11.19%), and OULU-NPU (12.23%) databases by using half total error rates (HTERs) in the most challenging cross-dataset testing scenario.
Abstract:The latest breakthroughs in large vision-language models, such as Bard and GPT-4, have showcased extraordinary abilities in performing a wide range of tasks. Such models are trained on massive datasets comprising billions of public image-text pairs with diverse tasks. However, their performance on task-specific domains, such as radiology, is still under-investigated and potentially limited due to a lack of sophistication in understanding biomedical images. On the other hand, conversational medical models have exhibited remarkable success but have mainly focused on text-based analysis. In this paper, we introduce XrayGPT, a novel conversational medical vision-language model that can analyze and answer open-ended questions about chest radiographs. Specifically, we align both medical visual encoder (MedClip) with a fine-tuned large language model (Vicuna), using a simple linear transformation. This alignment enables our model to possess exceptional visual conversation abilities, grounded in a deep understanding of radiographs and medical domain knowledge. To enhance the performance of LLMs in the medical context, we generate ~217k interactive and high-quality summaries from free-text radiology reports. These summaries serve to enhance the performance of LLMs through the fine-tuning process. Our approach opens up new avenues the research for advancing the automated analysis of chest radiographs. Our open-source demos, models, and instruction sets are available at: https://github.com/mbzuai-oryx/XrayGPT.
Abstract:In this work, we propose a few-shot colorectal tissue image generation method for addressing the scarcity of histopathological training data for rare cancer tissues. Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images. Within our XM-GAN, a novel controllable fusion block densely aggregates local regions of reference images based on their similarity to those in the base image, resulting in locally consistent features. To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images. We evaluate our few-shot colorectral tissue image generation by performing extensive qualitative, quantitative and subject specialist (pathologist) based evaluations. Specifically, in specialist-based evaluation, pathologists could differentiate between our XM-GAN generated tissue images and real images only 55% time. Moreover, we utilize these generated images as data augmentation to address the few-shot tissue image classification task, achieving a gain of 4.4% in terms of mean accuracy over the vanilla few-shot classifier. Code: \url{https://github.com/VIROBO-15/XM-GAN}
Abstract:Existing video instance segmentation (VIS) approaches generally follow a closed-world assumption, where only seen category instances are identified and spatio-temporally segmented at inference. Open-world formulation relaxes the close-world static-learning assumption as follows: (a) first, it distinguishes a set of known categories as well as labels an unknown object as `unknown' and then (b) it incrementally learns the class of an unknown as and when the corresponding semantic labels become available. We propose the first open-world VIS approach, named OW-VISFormer, that introduces a novel feature enrichment mechanism and a spatio-temporal objectness (STO) module. The feature enrichment mechanism based on a light-weight auxiliary network aims at accurate pixel-level (unknown) object delineation from the background as well as distinguishing category-specific known semantic classes. The STO module strives to generate instance-level pseudo-labels by enhancing the foreground activations through a contrastive loss. Moreover, we also introduce an extensive experimental protocol to measure the characteristics of OW-VIS. Our OW-VISFormer performs favorably against a solid baseline in OW-VIS setting. Further, we evaluate our contributions in the standard fully-supervised VIS setting by integrating them into the recent SeqFormer, achieving an absolute gain of 1.6\% AP on Youtube-VIS 2019 val. set. Lastly, we show the generalizability of our contributions for the open-world detection (OWOD) setting, outperforming the best existing OWOD method in the literature. Code, models along with OW-VIS splits are available at \url{https://github.com/OmkarThawakar/OWVISFormer}.