Abstract:Unsupervised (US) video anomaly detection (VAD) in surveillance applications is gaining more popularity recently due to its practical real-world applications. As surveillance videos are privacy sensitive and the availability of large-scale video data may enable better US-VAD systems, collaborative learning can be highly rewarding in this setting. However, due to the extremely challenging nature of the US-VAD task, where learning is carried out without any annotations, privacy-preserving collaborative learning of US-VAD systems has not been studied yet. In this paper, we propose a new baseline for anomaly detection capable of localizing anomalous events in complex surveillance videos in a fully unsupervised fashion without any labels on a privacy-preserving participant-based distributed training configuration. Additionally, we propose three new evaluation protocols to benchmark anomaly detection approaches on various scenarios of collaborations and data availability. Based on these protocols, we modify existing VAD datasets to extensively evaluate our approach as well as existing US SOTA methods on two large-scale datasets including UCF-Crime and XD-Violence. All proposed evaluation protocols, dataset splits, and codes are available here: https://github.com/AnasEmad11/CLAP
Abstract:Ahead-of-time forecasting of the output power of power plants is essential for the stability of the electricity grid and ensuring uninterrupted service. However, forecasting renewable energy sources is difficult due to the chaotic behavior of natural energy sources. This paper presents a new approach to estimate short-term solar irradiance from sky images. The~proposed algorithm extracts features from sky images and use learning-based techniques to estimate the solar irradiance. The~performance of proposed machine learning (ML) algorithm is evaluated using two publicly available datasets of sky images. The~datasets contain over 350,000 images for an interval of 16 years, from 2004 to 2020, with the corresponding global horizontal irradiance (GHI) of each image as the ground truth. Compared to the state-of-the-art computationally heavy algorithms proposed in the literature, our approach achieves competitive results with much less computational complexity for both nowcasting and forecasting up to 4 h ahead of time.
Abstract:Detection of anomalous events in videos is an important problem in applications such as surveillance. Video anomaly detection (VAD) is well-studied in the one-class classification (OCC) and weakly supervised (WS) settings. However, fully unsupervised (US) video anomaly detection methods, which learn a complete system without any annotation or human supervision, have not been explored in depth. This is because the lack of any ground truth annotations significantly increases the magnitude of the VAD challenge. To address this challenge, we propose a simple-but-effective two-stage pseudo-label generation framework that produces segment-level (normal/anomaly) pseudo-labels, which can be further used to train a segment-level anomaly detector in a supervised manner. The proposed coarse-to-fine pseudo-label (C2FPL) generator employs carefully-designed hierarchical divisive clustering and statistical hypothesis testing to identify anomalous video segments from a set of completely unlabeled videos. The trained anomaly detector can be directly applied on segments of an unseen test video to obtain segment-level, and subsequently, frame-level anomaly predictions. Extensive studies on two large-scale public-domain datasets, UCF-Crime and XD-Violence, demonstrate that the proposed unsupervised approach achieves superior performance compared to all existing OCC and US methods , while yielding comparable performance to the state-of-the-art WS methods.