Radio Frequency Interference (RFI) is a known growing challenge for radio astronomy, intensified by increasing observatory sensitivity and prevalence of orbital RFI sources. Spiking Neural Networks (SNNs) offer a promising solution for real-time RFI detection by exploiting the time-varying nature of radio observation and neuron dynamics together. This work explores the inclusion of polarisation information in SNN-based RFI detection, using simulated data from the Hydrogen Epoch of Reionisation Array (HERA) instrument and provides power usage estimates for deploying SNN-based RFI detection on existing neuromorphic hardware. Preliminary results demonstrate state-of-the-art detection accuracy and highlight possible extensive energy-efficiency gains.