Abstract:While the language modeling objective has been shown to be deeply connected with compression, it is surprising that modern LLMs are not employed in practical text compression systems. In this paper, we provide an in-depth analysis of neural network and transformer-based compression techniques to answer this question. We compare traditional text compression systems with neural network and LLM-based text compression methods. Although LLM-based systems significantly outperform conventional compression methods, they are highly impractical. Specifically, LLMZip, a recent text compression system using Llama3-8B requires 9.5 days to compress just 10 MB of text, although with huge improvements in compression ratios. To overcome this, we present FineZip - a novel LLM-based text compression system that combines ideas of online memorization and dynamic context to reduce the compression time immensely. FineZip can compress the above corpus in approximately 4 hours compared to 9.5 days, a 54 times improvement over LLMZip and comparable performance. FineZip outperforms traditional algorithmic compression methods with a large margin, improving compression ratios by approximately 50\%. With this work, we take the first step towards making lossless text compression with LLMs a reality. While FineZip presents a significant step in that direction, LLMs are still not a viable solution for large-scale text compression. We hope our work paves the way for future research and innovation to solve this problem.
Abstract:Speech sounds convey a great deal of information about the scenes, resulting in a variety of effects ranging from reverberation to additional ambient sounds. In this paper, we manipulate input speech to sound as though it was recorded within a different scene, given an audio-visual conditional example recorded from that scene. Our model learns through self-supervision, taking advantage of the fact that natural video contains recurring sound events and textures. We extract an audio clip from a video and apply speech enhancement. We then train a latent diffusion model to recover the original speech, using another audio-visual clip taken from elsewhere in the video as a conditional hint. Through this process, the model learns to transfer the conditional example's sound properties to the input speech. We show that our model can be successfully trained using unlabeled, in-the-wild videos, and that an additional visual signal can improve its sound prediction abilities. Please see our project webpage for video results: https://tinglok.netlify.app/files/avsoundscape/
Abstract:Current de-facto dysfluency modeling methods utilize template matching algorithms which are not generalizable to out-of-domain real-world dysfluencies across languages, and are not scalable with increasing amounts of training data. To handle these problems, we propose Stutter-Solver: an end-to-end framework that detects dysfluency with accurate type and time transcription, inspired by the YOLO object detection algorithm. Stutter-Solver can handle co-dysfluencies and is a natural multi-lingual dysfluency detector. To leverage scalability and boost performance, we also introduce three novel dysfluency corpora: VCTK-Pro, VCTK-Art, and AISHELL3-Pro, simulating natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation through articulatory-encodec and TTS-based methods. Our approach achieves state-of-the-art performance on all available dysfluency corpora. Code and datasets are open-sourced at https://github.com/eureka235/Stutter-Solver
Abstract:Recent large language models (LLMs) have enabled the development of advanced agentic systems that can integrate various tools and APIs to fulfill user queries through function calling. However, the deployment of these LLMs on the edge has not been explored since they typically require cloud-based infrastructure due to their substantial model size and computational demands. To this end, we present TinyAgent, an end-to-end framework for training and deploying task-specific small language model agents capable of function calling for driving agentic systems at the edge. We first show how to enable accurate function calling for open-source models via the LLMCompiler framework. We then systematically curate a high-quality dataset for function calling, which we use to fine-tune two small language models, TinyAgent-1.1B and 7B. For efficient inference, we introduce a novel tool retrieval method to reduce the input prompt length and utilize quantization to further accelerate the inference speed. As a driving application, we demonstrate a local Siri-like system for Apple's MacBook that can execute user commands through text or voice input. Our results show that our models can achieve, and even surpass, the function-calling capabilities of larger models like GPT-4-Turbo, while being fully deployed at the edge. We open-source our dataset, models, and installable package and provide a demo video for our MacBook assistant agent.
Abstract:Speech dysfluency modeling is the core module for spoken language learning, and speech therapy. However, there are three challenges. First, current state-of-the-art solutions suffer from poor scalability. Second, there is a lack of a large-scale dysfluency corpus. Third, there is not an effective learning framework. In this paper, we propose \textit{SSDM: Scalable Speech Dysfluency Modeling}, which (1) adopts articulatory gestures as scalable forced alignment; (2) introduces connectionist subsequence aligner (CSA) to achieve dysfluency alignment; (3) introduces a large-scale simulated dysfluency corpus called Libri-Dys; and (4) develops an end-to-end system by leveraging the power of large language models (LLMs). We expect SSDM to serve as a standard in the area of dysfluency modeling. Demo is available at \url{https://eureka235.github.io}.
Abstract:Accurate modeling of the vocal tract is necessary to construct articulatory representations for interpretable speech processing and linguistics. However, vocal tract modeling is challenging because many internal articulators are occluded from external motion capture technologies. Real-time magnetic resonance imaging (RT-MRI) allows measuring precise movements of internal articulators during speech, but annotated datasets of MRI are limited in size due to time-consuming and computationally expensive labeling methods. We first present a deep labeling strategy for the RT-MRI video using a vision-only segmentation approach. We then introduce a multimodal algorithm using audio to improve segmentation of vocal articulators. Together, we set a new benchmark for vocal tract modeling in MRI video segmentation and use this to release labels for a 75-speaker RT-MRI dataset, increasing the amount of labeled public RT-MRI data of the vocal tract by over a factor of 9. The code and dataset labels can be found at \url{rishiraij.github.io/multimodal-mri-avatar/}.
Abstract:This study presents a targeted model editing analysis focused on the latest large language model, Llama-3. We explore the efficacy of popular model editing techniques - ROME, MEMIT, and EMMET, which are designed for precise layer interventions. We identify the most effective layers for targeted edits through an evaluation that encompasses up to 4096 edits across three distinct strategies: sequential editing, batch editing, and a hybrid approach we call as sequential-batch editing. Our findings indicate that increasing edit batch-sizes may degrade model performance more significantly than using smaller edit batches sequentially for equal number of edits. With this, we argue that sequential model editing is an important component for scaling model editing methods and future research should focus on methods that combine both batched and sequential editing. This observation suggests a potential limitation in current model editing methods which push towards bigger edit batch sizes, and we hope it paves way for future investigations into optimizing batch sizes and model editing performance.
Abstract:Model editing is a growing area focused on updating the knowledge embedded within models. Among the various methodologies, ROME and MEMIT stand out as leading "locate-and-edit" model editing techniques. While MEMIT enables batched editing of memories, ROME is limited to changing one fact at a time. This paper introduces a unifying framework that brings ROME and MEMIT under a single conceptual umbrella, optimizing for the same goal, which we call the "preservation-memorization" objective. This objective aims to preserve the representations of certain selected vectors while memorizing the representations of new factual information. Specifically, ROME optimizes this objective using an equality constraint, whereas MEMIT employs a more flexible least-square constraint. In addition to making batched edits, MEMIT also edits the model at multiple layers. We disentangle the distribution of edits to multiple layers from the optimization objective of MEMIT and show that these edit-distribution algorithms should be considered separate entities worthy of their own line of research. Finally, we present EMMET - an Equality-constrained Mass Model Editing algorithm for Transformers, a new batched memory-editing algorithm. With EMMET, we present a closed form solution for the equality-constrained version of the preservation-memorization objective. We show that EMMET is able to perform batched-edits on par with MEMIT up to a batch-size of 256 and discuss the challenges in stabilizing EMMET. By articulating the "locate-and-edit" model editing algorithms under a simple conceptual framework of "preservation-memorization", we aim to bridge the gap between intuition and mathematics and hope to simplify the journey for future researchers in model editing.
Abstract:Recent work on model editing using Rank-One Model Editing (ROME), a popular model editing method, has shown that there are certain facts that the algorithm is unable to edit without breaking the model. Such edits have previously been called disabling edits. These disabling edits cause immediate model collapse and limits the use of ROME for sequential editing. In this paper, we make two main contributions. Firstly, we show that model collapse with ROME only happens when making edits using the CounterFact dataset and does not happen when using the zsRE dataset. Secondly, we find that disabling edits are an artifact of the original implementation of ROME. With this paper, we provide a more stable implementation ROME, which we call r-ROME and show that we no longer observe model collapse when making large scale sequential edits with ROME.
Abstract:As Large Language Models (LLMs) are integrated with human daily applications rapidly, many societal and ethical concerns are raised regarding the behavior of LLMs. One of the ways to comprehend LLMs' behavior is to analyze their personalities. Many recent studies quantify LLMs' personalities using self-assessment tests that are created for humans. Yet many critiques question the applicability and reliability of these self-assessment tests when applied to LLMs. In this paper, we investigate LLM personalities using an alternate personality measurement method, which we refer to as the external evaluation method, where instead of prompting LLMs with multiple-choice questions in the Likert scale, we evaluate LLMs' personalities by analyzing their responses toward open-ended situational questions using an external machine learning model. We first fine-tuned a Llama2-7B model as the MBTI personality predictor that outperforms the state-of-the-art models as the tool to analyze LLMs' responses. Then, we prompt the LLMs with situational questions and ask them to generate Twitter posts and comments, respectively, in order to assess their personalities when playing two different roles. Using the external personality evaluation method, we identify that the obtained personality types for LLMs are significantly different when generating posts versus comments, whereas humans show a consistent personality profile in these two different situations. This shows that LLMs can exhibit different personalities based on different scenarios, thus highlighting a fundamental difference between personality in LLMs and humans. With our work, we call for a re-evaluation of personality definition and measurement in LLMs.