Abstract:Speech sounds convey a great deal of information about the scenes, resulting in a variety of effects ranging from reverberation to additional ambient sounds. In this paper, we manipulate input speech to sound as though it was recorded within a different scene, given an audio-visual conditional example recorded from that scene. Our model learns through self-supervision, taking advantage of the fact that natural video contains recurring sound events and textures. We extract an audio clip from a video and apply speech enhancement. We then train a latent diffusion model to recover the original speech, using another audio-visual clip taken from elsewhere in the video as a conditional hint. Through this process, the model learns to transfer the conditional example's sound properties to the input speech. We show that our model can be successfully trained using unlabeled, in-the-wild videos, and that an additional visual signal can improve its sound prediction abilities. Please see our project webpage for video results: https://tinglok.netlify.app/files/avsoundscape/
Abstract:Dysfluent speech modeling requires time-accurate and silence-aware transcription at both the word-level and phonetic-level. However, current research in dysfluency modeling primarily focuses on either transcription or detection, and the performance of each aspect remains limited. In this work, we present an unconstrained dysfluency modeling (UDM) approach that addresses both transcription and detection in an automatic and hierarchical manner. UDM eliminates the need for extensive manual annotation by providing a comprehensive solution. Furthermore, we introduce a simulated dysfluent dataset called VCTK++ to enhance the capabilities of UDM in phonetic transcription. Our experimental results demonstrate the effectiveness and robustness of our proposed methods in both transcription and detection tasks.
Abstract:In this paper, we study articulatory synthesis, a speech synthesis method using human vocal tract information that offers a way to develop efficient, generalizable and interpretable synthesizers. While recent advances have enabled intelligible articulatory synthesis using electromagnetic articulography (EMA), these methods lack critical articulatory information like excitation and nasality, limiting generalization capabilities. To bridge this gap, we propose an alternative MRI-based feature set that covers a much more extensive articulatory space than EMA. We also introduce normalization and denoising procedures to enhance the generalizability of deep learning methods trained on MRI data. Moreover, we propose an MRI-to-speech model that improves both computational efficiency and speech fidelity. Finally, through a series of ablations, we show that the proposed MRI representation is more comprehensive than EMA and identify the most suitable MRI feature subset for articulatory synthesis.
Abstract:We abstract the features (i.e. learned representations) of multi-modal data into 1) uni-modal features, which can be learned from uni-modal training, and 2) paired features, which can only be learned from cross-modal interactions. Multi-modal models are expected to benefit from cross-modal interactions on the basis of ensuring uni-modal feature learning. However, recent supervised multi-modal late-fusion training approaches still suffer from insufficient learning of uni-modal features on each modality. We prove that this phenomenon does hurt the model's generalization ability. To this end, we propose to choose a targeted late-fusion learning method for the given supervised multi-modal task from Uni-Modal Ensemble(UME) and the proposed Uni-Modal Teacher(UMT), according to the distribution of uni-modal and paired features. We demonstrate that, under a simple guiding strategy, we can achieve comparable results to other complex late-fusion or intermediate-fusion methods on various multi-modal datasets, including VGG-Sound, Kinetics-400, UCF101, and ModelNet40.
Abstract:Considering the microphone is easily affected by noise and soundproof materials, the radio frequency (RF) signal is a promising candidate to recover audio as it is immune to noise and can traverse many soundproof objects. In this paper, we introduce Radio2Speech, a system that uses RF signals to recover high quality speech from the loudspeaker. Radio2Speech can recover speech comparable to the quality of the microphone, advancing from recovering only single tone music or incomprehensible speech in existing approaches. We use Radio UNet to accurately recover speech in time-frequency domain from RF signals with limited frequency band. Also, we incorporate the neural vocoder to synthesize the speech waveform from the estimated time-frequency representation without using the contaminated phase. Quantitative and qualitative evaluations show that in quiet, noisy and soundproof scenarios, Radio2Speech achieves state-of-the-art performance and is on par with the microphone that works in quiet scenarios.
Abstract:From the patter of rain to the crunch of snow, the sounds we hear often convey the visual textures that appear within a scene. In this paper, we present a method for learning visual styles from unlabeled audio-visual data. Our model learns to manipulate the texture of a scene to match a sound, a problem we term audio-driven image stylization. Given a dataset of paired audio-visual data, we learn to modify input images such that, after manipulation, they are more likely to co-occur with a given input sound. In quantitative and qualitative evaluations, our sound-based model outperforms label-based approaches. We also show that audio can be an intuitive representation for manipulating images, as adjusting a sound's volume or mixing two sounds together results in predictable changes to visual style. Project webpage: https://tinglok.netlify.app/files/avstyle
Abstract:Dubbing is a post-production process of re-recording actors' dialogues, which is extensively used in filmmaking and video production. It is usually performed manually by professional voice actors who read lines with proper prosody, and in synchronization with the pre-recorded videos. In this work, we propose Neural Dubber, the first neural network model to solve a novel automatic video dubbing (AVD) task: synthesizing human speech synchronized with the given silent video from the text. Neural Dubber is a multi-modal text-to-speech (TTS) model that utilizes the lip movement in the video to control the prosody of the generated speech. Furthermore, an image-based speaker embedding (ISE) module is developed for the multi-speaker setting, which enables Neural Dubber to generate speech with a reasonable timbre according to the speaker's face. Experiments on the chemistry lecture single-speaker dataset and LRS2 multi-speaker dataset show that Neural Dubber can generate speech audios on par with state-of-the-art TTS models in terms of speech quality. Most importantly, both qualitative and quantitative evaluations show that Neural Dubber can control the prosody of synthesized speech by the video, and generate high-fidelity speech temporally synchronized with the video.
Abstract:Learning multi-modal representations is an essential step towards real-world robotic applications, and various multi-modal fusion models have been developed for this purpose. However, we observe that existing models, whose objectives are mostly based on joint training, often suffer from learning inferior representations of each modality. We name this problem Modality Failure, and hypothesize that the imbalance of modalities and the implicit bias of common objectives in fusion method prevent encoders of each modality from sufficient feature learning. To this end, we propose a new multi-modal learning method, Uni-Modal Teacher, which combines the fusion objective and uni-modal distillation to tackle the modality failure problem. We show that our method not only drastically improves the representation of each modality, but also improves the overall multi-modal task performance. Our method can be effectively generalized to most multi-modal fusion approaches. We achieve more than 3% improvement on the VGGSound audio-visual classification task, as well as improving performance on the NYU depth V2 RGB-D image segmentation task.
Abstract:In terms of source separation task, deep neural networks have two major approaches: one approach is modeling in the spectrogram domain, and the other approach is modeling in the waveform domain. Most of the previous papers use CNNs or LSTMs. However, due to the high sampling rate of audio, whether it is LSTMs with long-distance dependent or CNNs with sliding windows, it is still difficult to extract long-term input context. In this case, we propose an end-to-end network: Time-Frequency Attention Net (TF-Attention-Net), to study the ability of the attention mechanism in the source separation task. First, we introduce the Slice Attention, which can extract the acoustic features of temporal and frequency scales under different channels. Besides, the attention mechanism can be parallel calculated, while LSTMs cannot, because of its time-dependent property. Meanwhile, the receptive field of the attention mechanism is larger than the CNNs, which means that we can use shallower layers to extract longer distance dependence. Experiments indicate that our proposed TF-Attention-Net outperforms both the spectrogram-based U-Net and the waveform-based Wave-U-Net baselines.