Abstract:Speech is a hierarchical collection of text, prosody, emotions, dysfluencies, etc. Automatic transcription of speech that goes beyond text (words) is an underexplored problem. We focus on transcribing speech along with non-fluencies (dysfluencies). The current state-of-the-art pipeline SSDM suffers from complex architecture design, training complexity, and significant shortcomings in the local sequence aligner, and it does not explore in-context learning capacity. In this work, we propose SSDM 2.0, which tackles those shortcomings via four main contributions: (1) We propose a novel \textit{neural articulatory flow} to derive highly scalable speech representations. (2) We developed a \textit{full-stack connectionist subsequence aligner} that captures all types of dysfluencies. (3) We introduced a mispronunciation prompt pipeline and consistency learning module into LLM to leverage dysfluency \textit{in-context pronunciation learning} abilities. (4) We curated Libri-Dys and open-sourced the current largest-scale co-dysfluency corpus, \textit{Libri-Co-Dys}, for future research endeavors. In clinical experiments on pathological speech transcription, we tested SSDM 2.0 using nfvPPA corpus primarily characterized by \textit{articulatory dysfluencies}. Overall, SSDM 2.0 outperforms SSDM and all other dysfluency transcription models by a large margin. See our project demo page at \url{https://berkeley-speech-group.github.io/SSDM2.0/}.
Abstract:Current de-facto dysfluency modeling methods utilize template matching algorithms which are not generalizable to out-of-domain real-world dysfluencies across languages, and are not scalable with increasing amounts of training data. To handle these problems, we propose Stutter-Solver: an end-to-end framework that detects dysfluency with accurate type and time transcription, inspired by the YOLO object detection algorithm. Stutter-Solver can handle co-dysfluencies and is a natural multi-lingual dysfluency detector. To leverage scalability and boost performance, we also introduce three novel dysfluency corpora: VCTK-Pro, VCTK-Art, and AISHELL3-Pro, simulating natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation through articulatory-encodec and TTS-based methods. Our approach achieves state-of-the-art performance on all available dysfluency corpora. Code and datasets are open-sourced at https://github.com/eureka235/Stutter-Solver
Abstract:Dysfluent speech detection is the bottleneck for disordered speech analysis and spoken language learning. Current state-of-the-art models are governed by rule-based systems which lack efficiency and robustness, and are sensitive to template design. In this paper, we propose YOLO-Stutter: a first end-to-end method that detects dysfluencies in a time-accurate manner. YOLO-Stutter takes imperfect speech-text alignment as input, followed by a spatial feature aggregator, and a temporal dependency extractor to perform region-wise boundary and class predictions. We also introduce two dysfluency corpus, VCTK-Stutter and VCTK-TTS, that simulate natural spoken dysfluencies including repetition, block, missing, replacement, and prolongation. Our end-to-end method achieves state-of-the-art performance with a minimum number of trainable parameters for on both simulated data and real aphasia speech. Code and datasets are open-sourced at https://github.com/rorizzz/YOLO-Stutter
Abstract:Speech dysfluency modeling is the core module for spoken language learning, and speech therapy. However, there are three challenges. First, current state-of-the-art solutions suffer from poor scalability. Second, there is a lack of a large-scale dysfluency corpus. Third, there is not an effective learning framework. In this paper, we propose \textit{SSDM: Scalable Speech Dysfluency Modeling}, which (1) adopts articulatory gestures as scalable forced alignment; (2) introduces connectionist subsequence aligner (CSA) to achieve dysfluency alignment; (3) introduces a large-scale simulated dysfluency corpus called Libri-Dys; and (4) develops an end-to-end system by leveraging the power of large language models (LLMs). We expect SSDM to serve as a standard in the area of dysfluency modeling. Demo is available at \url{https://eureka235.github.io}.
Abstract:Achieving nuanced and accurate emulation of human voice has been a longstanding goal in artificial intelligence. Although significant progress has been made in recent years, the mainstream of speech synthesis models still relies on supervised speaker modeling and explicit reference utterances. However, there are many aspects of human voice, such as emotion, intonation, and speaking style, for which it is hard to obtain accurate labels. In this paper, we propose VoxGenesis, a novel unsupervised speech synthesis framework that can discover a latent speaker manifold and meaningful voice editing directions without supervision. VoxGenesis is conceptually simple. Instead of mapping speech features to waveforms deterministically, VoxGenesis transforms a Gaussian distribution into speech distributions conditioned and aligned by semantic tokens. This forces the model to learn a speaker distribution disentangled from the semantic content. During the inference, sampling from the Gaussian distribution enables the creation of novel speakers with distinct characteristics. More importantly, the exploration of latent space uncovers human-interpretable directions associated with specific speaker characteristics such as gender attributes, pitch, tone, and emotion, allowing for voice editing by manipulating the latent codes along these identified directions. We conduct extensive experiments to evaluate the proposed VoxGenesis using both subjective and objective metrics, finding that it produces significantly more diverse and realistic speakers with distinct characteristics than the previous approaches. We also show that latent space manipulation produces consistent and human-identifiable effects that are not detrimental to the speech quality, which was not possible with previous approaches. Audio samples of VoxGenesis can be found at: \url{https://bit.ly/VoxGenesis}.
Abstract:Speech disfluency modeling is the bottleneck for both speech therapy and language learning. However, there is no effective AI solution to systematically tackle this problem. We solidify the concept of disfluent speech and disfluent speech modeling. We then present Hierarchical Unconstrained Disfluency Modeling (H-UDM) approach, the hierarchical extension of UDM that addresses both disfluency transcription and detection to eliminate the need for extensive manual annotation. Our experimental findings serve as clear evidence of the effectiveness and reliability of the methods we have introduced, encompassing both transcription and detection tasks.
Abstract:Dysfluent speech modeling requires time-accurate and silence-aware transcription at both the word-level and phonetic-level. However, current research in dysfluency modeling primarily focuses on either transcription or detection, and the performance of each aspect remains limited. In this work, we present an unconstrained dysfluency modeling (UDM) approach that addresses both transcription and detection in an automatic and hierarchical manner. UDM eliminates the need for extensive manual annotation by providing a comprehensive solution. Furthermore, we introduce a simulated dysfluent dataset called VCTK++ to enhance the capabilities of UDM in phonetic transcription. Our experimental results demonstrate the effectiveness and robustness of our proposed methods in both transcription and detection tasks.
Abstract:Vocoder models have recently achieved substantial progress in generating authentic audio comparable to human quality while significantly reducing memory requirement and inference time. However, these data-hungry generative models require large-scale audio data for learning good representations. In this paper, we apply contrastive learning methods in training the vocoder to improve the perceptual quality of the vocoder without modifying its architecture or adding more data. We design an auxiliary task with mel-spectrogram contrastive learning to enhance the utterance-level quality of the vocoder model under data-limited conditions. We also extend the task to include waveforms to improve the multi-modality comprehension of the model and address the discriminator overfitting problem. We optimize the additional task simultaneously with GAN training objectives. Our result shows that the tasks improve model performance substantially in data-limited settings. Our analysis based on the result indicates that the proposed design successfully alleviates discriminator overfitting and produces audio of higher fidelity.
Abstract:In this paper, we study articulatory synthesis, a speech synthesis method using human vocal tract information that offers a way to develop efficient, generalizable and interpretable synthesizers. While recent advances have enabled intelligible articulatory synthesis using electromagnetic articulography (EMA), these methods lack critical articulatory information like excitation and nasality, limiting generalization capabilities. To bridge this gap, we propose an alternative MRI-based feature set that covers a much more extensive articulatory space than EMA. We also introduce normalization and denoising procedures to enhance the generalizability of deep learning methods trained on MRI data. Moreover, we propose an MRI-to-speech model that improves both computational efficiency and speech fidelity. Finally, through a series of ablations, we show that the proposed MRI representation is more comprehensive than EMA and identify the most suitable MRI feature subset for articulatory synthesis.
Abstract:Self-supervision has shown great potential for audio-visual speech recognition by vastly reducing the amount of labeled data required to build good systems. However, existing methods are either not entirely end-to-end or do not train joint representations of both modalities. In this paper, we introduce AV-data2vec which addresses these challenges and builds audio-visual representations based on predicting contextualized representations which has been successful in the uni-modal case. The model uses a shared transformer encoder for both audio and video and can combine both modalities to improve speech recognition. Results on LRS3 show that AV-data2vec consistently outperforms existing methods under most settings.