Abstract:This study investigates the impact of localized updates to large language models (LLMs), specifically in the context of knowledge editing - a task aimed at incorporating or modifying specific facts without altering broader model capabilities. We first show that across different post-training interventions like continuous pre-training, full fine-tuning and LORA-based fine-tuning, the Frobenius norm of the updated matrices always increases. This increasing norm is especially detrimental for localized knowledge editing, where only a subset of matrices are updated in a model . We reveal a consistent phenomenon across various editing techniques, including fine-tuning, hypernetwork-based approaches, and locate-and-edit methods: the norm of the updated matrix invariably increases with successive updates. Such growth disrupts model balance, particularly when isolated matrices are updated while the rest of the model remains static, leading to potential instability and degradation of downstream performance. Upon deeper investigations of the intermediate activation vectors, we find that the norm of internal activations decreases and is accompanied by shifts in the subspaces occupied by these activations, which shows that these activation vectors now occupy completely different regions in the representation space compared to the unedited model. With our paper, we highlight the technical challenges with continuous and localized sequential knowledge editing and their implications for maintaining model stability and utility.
Abstract:Prior work in parameter-modifying knowledge editing has shown that large-scale sequential editing leads to significant model degradation. In this paper, we study the reasons behind this and scale sequential knowledge editing to 10,000 sequential edits, while maintaining the downstream performance of the original model. We first show that locate-then-edit knowledge editing methods lead to overfitting on the edited facts. We also show that continuous knowledge editing using these methods leads to disproportionate growth in the norm of the edited matrix. We then provide a crucial insight into the inner workings of locate-then-edit methods. We show that norm-growth is a hidden trick employed by these methods that gives larger importance to the output activations produced from the edited layers. With this "importance hacking", the edited layers provide a much larger contributions to the model's output. To mitigate these issues, we present ENCORE - Early stopping and Norm-Constrained Robust knowledge Editing. ENCORE controls for overfitting and the disproportionate norm-growth to enable long-term sequential editing, where we are able to perform up to 10,000 sequential edits without loss of downstream performance. ENCORE is also 61% faster than MEMIT and 64% faster than AlphaEdit on Llama3-8B.