Abstract:Hyperbolic spaces allow for more efficient modeling of complex, hierarchical structures, which is particularly beneficial in tasks involving multi-modal data. Although hyperbolic geometries have been proven effective for language-image pre-training, their capabilities to unify language, image, and 3D Point Cloud modalities are under-explored. We extend the 3D Point Cloud modality in hyperbolic multi-modal contrastive pre-training. Additionally, we explore the entailment, modality gap, and alignment regularizers for learning hierarchical 3D embeddings and facilitating the transfer of knowledge from both Text and Image modalities. These regularizers enable the learning of intra-modal hierarchy within each modality and inter-modal hierarchy across text, 2D images, and 3D Point Clouds. Experimental results demonstrate that our proposed training strategy yields an outstanding 3D Point Cloud encoder, and the obtained 3D Point Cloud hierarchical embeddings significantly improve performance on various downstream tasks.
Abstract:Although Deep Learning (DL) methods becoming increasingly popular in vulnerability detection, their performance is seriously limited by insufficient training data. This is mainly because few existing software organizations can maintain a complete set of high-quality samples for DL-based vulnerability detection. Due to the concerns about privacy leakage, most of them are reluctant to share data, resulting in the data silo problem. Since enables collaboratively model training without data sharing, Federated Learning (FL) has been investigated as a promising means of addressing the data silo problem in DL-based vulnerability detection. However, since existing FL-based vulnerability detection methods focus on specific applications, it is still far unclear i) how well FL adapts to common vulnerability detection tasks and ii) how to design a high-performance FL solution for a specific vulnerability detection task. To answer these two questions, this paper first proposes VulFL, an effective evaluation framework for FL-based vulnerability detection. Then, based on VulFL, this paper conducts a comprehensive study to reveal the underlying capabilities of FL in dealing with different types of CWEs, especially when facing various data heterogeneity scenarios. Our experimental results show that, compared to independent training, FL can significantly improve the detection performance of common AI models on all investigated CWEs, though the performance of FL-based vulnerability detection is limited by heterogeneous data. To highlight the performance differences between different FL solutions for vulnerability detection, we extensively investigate the impacts of different configuration strategies for each framework component of VulFL. Our study sheds light on the potential of FL in vulnerability detection, which can be used to guide the design of FL-based solutions for vulnerability detection.
Abstract:Due to the advantages of privacy-preserving, Federated Learning (FL) is widely used in distributed machine learning systems. However, existing FL methods suffer from low-inference performance caused by data heterogeneity. Specifically, due to heterogeneous data, the optimization directions of different local models vary greatly, making it difficult for the traditional FL method to get a generalized global model that performs well on all clients. As one of the state-of-the-art FL methods, the mutation-based FL method attempts to adopt a stochastic mutation strategy to guide the model training towards a well-generalized area (i.e., flat area in the loss landscape). Specifically, mutation allows the model to shift within the solution space, providing an opportunity to escape areas with poor generalization (i.e., sharp area). However, the stochastic mutation strategy easily results in diverse optimal directions of mutated models, which limits the performance of the existing mutation-based FL method. To achieve higher performance, this paper proposes a novel mutation-based FL approach named FedQP, utilizing a quadratic programming strategy to regulate the mutation directions wisely. By biasing the model mutation towards the direction of gradient update rather than traditional random mutation, FedQP can effectively guide the model to optimize towards a well-generalized area (i.e., flat area). Experiments on multiple well-known datasets show that our quadratic programming-guided mutation strategy effectively improves the inference accuracy of the global model in various heterogeneous data scenarios.
Abstract:To date, the International Zeolite Association Structure Commission (IZA-SC) has cataloged merely 255 distinct zeolite structures, with millions of theoretically possible structures yet to be discovered. The synthesis of a specific zeolite typically necessitates the use of an organic structure-directing agent (OSDA), since the selectivity for a particular zeolite is largely determined by the affinity between the OSDA and the zeolite. Therefore, finding the best affinity OSDA-zeolite pair is the key to the synthesis of targeted zeolite. However, OSDA-zeolite pairs frequently exhibit complex geometric structures, i.e., a complex crystal structure formed by a large number of atoms. Although some existing machine learning methods can represent the periodicity of crystals, they cannot accurately represent crystal structures with local variability. To address this issue, we propose a novel approach called Zeoformer, which can effectively represent coarse-grained crystal periodicity and fine-grained local variability. Zeoformer reconstructs the unit cell centered around each atom and encodes the pairwise distances between this central atom and other atoms within the reconstructed unit cell. The introduction of pairwise distances within the reconstructed unit cell more effectively represents the overall structure of the unit cell and the differences between different unit cells, enabling the model to more accurately and efficiently predict the properties of OSDA-zeolite pairs and general crystal structures. Through comprehensive evaluation, our Zeoformer model demonstrates the best performance on OSDA-zeolite pair datasets and two types of crystal material datasets.
Abstract:Introducing Group Equivariant Convolution (GConv) empowers models to explore symmetries hidden in visual data, improving their performance. However, in real-world scenarios, objects or scenes often exhibit perturbations of a symmetric system, specifically a deviation from a symmetric architecture, which can be characterized by a non-trivial action of a symmetry group, known as Symmetry-Breaking. Traditional GConv methods are limited by the strict operation rules in the group space, only ensuring features remain strictly equivariant under limited group transformations, making it difficult to adapt to Symmetry-Breaking or non-rigid transformations. Motivated by this, we introduce a novel Relaxed Rotation GConv (R2GConv) with our defined Relaxed Rotation-Equivariant group $\mathbf{R}_4$. Furthermore, we propose a Relaxed Rotation-Equivariant Network (R2Net) as the backbone and further develop the Symmetry-Breaking Object Detector (SBDet) for 2D object detection built upon it. Experiments demonstrate the effectiveness of our proposed R2GConv in natural image classification tasks, and SBDet achieves excellent performance in object detection tasks with improved generalization capabilities and robustness.
Abstract:Although Federated Learning (FL) enables collaborative learning in Artificial Intelligence of Things (AIoT) design, it fails to work on low-memory AIoT devices due to its heavy memory usage. To address this problem, various federated pruning methods are proposed to reduce memory usage during inference. However, few of them can substantially mitigate the memory burdens during pruning and training. As an alternative, zeroth-order or backpropagation-free (BP-Free) methods can partially alleviate the memory consumption, but they suffer from scaling up and large computation overheads, since the gradient estimation error and floating point operations (FLOPs) increase as the dimensionality of the model parameters grows. In this paper, we propose a federated foresight pruning method based on Neural Tangent Kernel (NTK), which can seamlessly integrate with federated BP-Free training frameworks. We present an approximation to the computation of federated NTK by using the local NTK matrices. Moreover, we demonstrate that the data-free property of our method can substantially reduce the approximation error in extreme data heterogeneity scenarios. Since our approach improves the performance of the vanilla BP-Free method with fewer FLOPs and truly alleviates memory pressure during training and inference, it makes FL more friendly to low-memory devices. Comprehensive experimental results obtained from simulation- and real test-bed-based platforms show that our federated foresight-pruning method not only preserves the ability of the dense model with a memory reduction up to 9x but also boosts the performance of the vanilla BP-Free method with dramatically fewer FLOPs.
Abstract:Although Split Federated Learning (SFL) is good at enabling knowledge sharing among resource-constrained clients, it suffers from the problem of low training accuracy due to the neglect of data heterogeneity and catastrophic forgetting. To address this issue, we propose a novel SFL approach named KoReA-SFL, which adopts a multi-model aggregation mechanism to alleviate gradient divergence caused by heterogeneous data and a knowledge replay strategy to deal with catastrophic forgetting. Specifically, in KoReA-SFL cloud servers (i.e., fed server and main server) maintain multiple branch model portions rather than a global portion for local training and an aggregated master-model portion for knowledge sharing among branch portions. To avoid catastrophic forgetting, the main server of KoReA-SFL selects multiple assistant devices for knowledge replay according to the training data distribution of each server-side branch-model portion. Experimental results obtained from non-IID and IID scenarios demonstrate that KoReA-SFL significantly outperforms conventional SFL methods (by up to 23.25\% test accuracy improvement).
Abstract:Federated Learning (FL) as a promising distributed machine learning paradigm has been widely adopted in Artificial Intelligence of Things (AIoT) applications. However, the efficiency and inference capability of FL is seriously limited due to the presence of stragglers and data imbalance across massive AIoT devices, respectively. To address the above challenges, we present a novel asynchronous FL approach named CaBaFL, which includes a hierarchical Cache-based aggregation mechanism and a feature Balance-guided device selection strategy. CaBaFL maintains multiple intermediate models simultaneously for local training. The hierarchical cache-based aggregation mechanism enables each intermediate model to be trained on multiple devices to align the training time and mitigate the straggler issue. In specific, each intermediate model is stored in a low-level cache for local training and when it is trained by sufficient local devices, it will be stored in a high-level cache for aggregation. To address the problem of imbalanced data, the feature balance-guided device selection strategy in CaBaFL adopts the activation distribution as a metric, which enables each intermediate model to be trained across devices with totally balanced data distributions before aggregation. Experimental results show that compared with the state-of-the-art FL methods, CaBaFL achieves up to 9.26X training acceleration and 19.71\% accuracy improvements.
Abstract:Federated Instruction Tuning (FIT) has shown the ability to achieve collaborative model instruction tuning among massive data owners without sharing private data. However, it still faces two key challenges, i.e., data and resource heterogeneity. Due to the varying data distribution and preferences among data owners, FIT cannot adapt to the personalized data of individual owners. Moreover, clients with superior computational abilities are constrained since they need to maintain the same fine-tuning architecture as the weaker clients. To address these issues, we propose a novel Personalized Federated Instruction Tuning (PerFIT) framework based on architecture search. Specifically, PerFIT allows each client to search for a personalized architecture by expanding the trainable parameter space of the global model followed by pruning the parameters to the original state. This procedure allows personalized instruction fine-tuning within expanded parameter spaces, concurrently preserving the same number of trainable parameters. Furthermore, to release the abilities of heterogeneous computational resources and enhance the performance of personalization on local data, we exploit personalized parameter-wise aggregation. The evaluation with multiple LLMs non-IID scenarios demonstrates that compared to the state-of-the-art FIT methods, our approach can achieve up to a 23% decrease in perplexity.
Abstract:Learning to collaborate has witnessed significant progress in multi-agent reinforcement learning (MARL). However, promoting coordination among agents and enhancing exploration capabilities remain challenges. In multi-agent environments, interactions between agents are limited in specific situations. Effective collaboration between agents thus requires a nuanced understanding of when and how agents' actions influence others. To this end, in this paper, we propose a novel MARL algorithm named Situation-Dependent Causal Influence-Based Cooperative Multi-agent Reinforcement Learning (SCIC), which incorporates a novel Intrinsic reward mechanism based on a new cooperation criterion measured by situation-dependent causal influence among agents. Our approach aims to detect inter-agent causal influences in specific situations based on the criterion using causal intervention and conditional mutual information. This effectively assists agents in exploring states that can positively impact other agents, thus promoting cooperation between agents. The resulting update links coordinated exploration and intrinsic reward distribution, which enhance overall collaboration and performance. Experimental results on various MARL benchmarks demonstrate the superiority of our method compared to state-of-the-art approaches.