Abstract:We describe a novel approach for developing realistic digital models of dynamic range compressors for digital audio production by analyzing their analog prototypes. While realistic digital dynamic compressors are potentially useful for many applications, the design process is challenging because the compressors operate nonlinearly over long time scales. Our approach is based on the structured state space sequence model (S4), as implementing the state-space model (SSM) has proven to be efficient at learning long-range dependencies and is promising for modeling dynamic range compressors. We present in this paper a deep learning model with S4 layers to model the Teletronix LA-2A analog dynamic range compressor. The model is causal, executes efficiently in real time, and achieves roughly the same quality as previous deep-learning models but with fewer parameters.
Abstract:In this document, the supervisory control and data acquisition (SCADA) and phasor measurement unit (PMU) measurement chain modeling will be studied, where the measurement error sources of each component in the SCADA and PMU measurement chains and the reasons leading to measurement errors exhibiting non-zero-mean, non-Gaussian, and time-varying statistical characteristic are summarized and analyzed. This document provides a few equations, figures, and discussions about the details of the SCADA and PMU measurement error chain modeling, which are intended to facilitate the understanding of how the measurement errors are designed for each component in the SCADA and PMU measurement chains. The measurement chain models described here are also used for synthesizing measurement errors with realistic characteristics in simulation cases to test the developed algorithms or methodologies.