Abstract:Power distribution networks are evolving due to the integration of DERs and increased customer participation. To maintain optimal operation, minimize losses, and meet varying load demands, frequent network reconfiguration is necessary. Traditionally, the reconfiguration task relies on optimization software and expert operators, but as systems grow more complex, faster and more adaptive solutions are required without expert intervention. Data-driven reconfiguration is gaining traction for its accuracy, speed, and robustness against incomplete network data. LLMs, with their ability to capture complex patterns, offer a promising approach for efficient and responsive network reconfiguration in evolving complex power networks. In this work, we introduce LLM4DistReconfig, a deep learning-based approach utilizing a fine-tuned LLM to solve the distribution network reconfiguration problem. By carefully crafting prompts and designing a custom loss function, we train the LLM with inputs representing network parameters such as buses, available lines, open lines, node voltages, and system loss. The model then predicts optimal reconfigurations by outputting updated network configurations that minimize system loss while meeting operational constraints. Our approach significantly reduces inference time compared to classical algorithms, allowing for near real-time optimal reconfiguration after training. Experimental results show that our method generates optimal configurations minimizing system loss for five individual and a combined test dataset. It also produces minimal invalid edges, no cycles, or subgraphs across all datasets, fulfilling domain-specific needs. Additionally, the generated responses contain less than 5% improper outputs on seen networks and satisfactory results on unseen networks, demonstrating its effectiveness and reliability for the reconfiguration task.
Abstract:In this document, the supervisory control and data acquisition (SCADA) and phasor measurement unit (PMU) measurement chain modeling will be studied, where the measurement error sources of each component in the SCADA and PMU measurement chains and the reasons leading to measurement errors exhibiting non-zero-mean, non-Gaussian, and time-varying statistical characteristic are summarized and analyzed. This document provides a few equations, figures, and discussions about the details of the SCADA and PMU measurement error chain modeling, which are intended to facilitate the understanding of how the measurement errors are designed for each component in the SCADA and PMU measurement chains. The measurement chain models described here are also used for synthesizing measurement errors with realistic characteristics in simulation cases to test the developed algorithms or methodologies.