Abstract:Power distribution networks are evolving due to the integration of DERs and increased customer participation. To maintain optimal operation, minimize losses, and meet varying load demands, frequent network reconfiguration is necessary. Traditionally, the reconfiguration task relies on optimization software and expert operators, but as systems grow more complex, faster and more adaptive solutions are required without expert intervention. Data-driven reconfiguration is gaining traction for its accuracy, speed, and robustness against incomplete network data. LLMs, with their ability to capture complex patterns, offer a promising approach for efficient and responsive network reconfiguration in evolving complex power networks. In this work, we introduce LLM4DistReconfig, a deep learning-based approach utilizing a fine-tuned LLM to solve the distribution network reconfiguration problem. By carefully crafting prompts and designing a custom loss function, we train the LLM with inputs representing network parameters such as buses, available lines, open lines, node voltages, and system loss. The model then predicts optimal reconfigurations by outputting updated network configurations that minimize system loss while meeting operational constraints. Our approach significantly reduces inference time compared to classical algorithms, allowing for near real-time optimal reconfiguration after training. Experimental results show that our method generates optimal configurations minimizing system loss for five individual and a combined test dataset. It also produces minimal invalid edges, no cycles, or subgraphs across all datasets, fulfilling domain-specific needs. Additionally, the generated responses contain less than 5% improper outputs on seen networks and satisfactory results on unseen networks, demonstrating its effectiveness and reliability for the reconfiguration task.
Abstract:Time-series forecasting has seen significant advancements with the introduction of token prediction mechanisms such as multi-head attention. However, these methods often struggle to achieve the same performance as in language modeling, primarily due to the quadratic computational cost and the complexity of capturing long-range dependencies in time-series data. State-space models (SSMs), such as Mamba, have shown promise in addressing these challenges by offering efficient solutions with linear RNNs capable of modeling long sequences with larger context windows. However, there remains room for improvement in accuracy and scalability. We propose the use of Test-Time Training (TTT) modules in a parallel architecture to enhance performance in long-term time series forecasting. Through extensive experiments on standard benchmark datasets, we demonstrate that TTT modules consistently outperform state-of-the-art models, including the Mamba-based TimeMachine, particularly in scenarios involving extended sequence and prediction lengths. Our results show significant improvements in Mean Squared Error (MSE) and Mean Absolute Error (MAE), especially on larger datasets such as Electricity, Traffic, and Weather, underscoring the effectiveness of TTT in capturing long-range dependencies. Additionally, we explore various convolutional architectures within the TTT framework, showing that even simple configurations like 1D convolution with small filters can achieve competitive results. This work sets a new benchmark for time-series forecasting and lays the groundwork for future research in scalable, high-performance forecasting models.