Abstract:Vehicle Re-Identification is to find images of the same vehicle from various views in the cross-camera scenario. The main challenges of this task are the large intra-instance distance caused by different views and the subtle inter-instance discrepancy caused by similar vehicles. In this paper, we propose a parsing-based view-aware embedding network (PVEN) to achieve the view-aware feature alignment and enhancement for vehicle ReID. First, we introduce a parsing network to parse a vehicle into four different views, and then align the features by mask average pooling. Such alignment provides a fine-grained representation of the vehicle. Second, in order to enhance the view-aware features, we design a common-visible attention to focus on the common visible views, which not only shortens the distance among intra-instances, but also enlarges the discrepancy of inter-instances. The PVEN helps capture the stable discriminative information of vehicle under different views. The experiments conducted on three datasets show that our model outperforms state-of-the-art methods by a large margin.
Abstract:Weakly supervised referring expression grounding aims at localizing the referential object in an image according to the linguistic query, where the mapping between the referential object and query is unknown in the training stage. To address this problem, we propose a novel end-to-end adaptive reconstruction network (ARN). It builds the correspondence between image region proposal and query in an adaptive manner: adaptive grounding and collaborative reconstruction. Specifically, we first extract the subject, location and context features to represent the proposals and the query respectively. Then, we design the adaptive grounding module to compute the matching score between each proposal and query by a hierarchical attention model. Finally, based on attention score and proposal features, we reconstruct the input query with a collaborative loss of language reconstruction loss, adaptive reconstruction loss, and attribute classification loss. This adaptive mechanism helps our model to alleviate the variance of different referring expressions. Experiments on four large-scale datasets show ARN outperforms existing state-of-the-art methods by a large margin. Qualitative results demonstrate that the proposed ARN can better handle the situation where multiple objects of a particular category situated together.