University of Chinese Academy of Sciences, Key Lab of Intell. Info. Process., Inst. of Comput. Tech., Chinese Academy of Sciences
Abstract:Vehicle Re-Identification is to find images of the same vehicle from various views in the cross-camera scenario. The main challenges of this task are the large intra-instance distance caused by different views and the subtle inter-instance discrepancy caused by similar vehicles. In this paper, we propose a parsing-based view-aware embedding network (PVEN) to achieve the view-aware feature alignment and enhancement for vehicle ReID. First, we introduce a parsing network to parse a vehicle into four different views, and then align the features by mask average pooling. Such alignment provides a fine-grained representation of the vehicle. Second, in order to enhance the view-aware features, we design a common-visible attention to focus on the common visible views, which not only shortens the distance among intra-instances, but also enlarges the discrepancy of inter-instances. The PVEN helps capture the stable discriminative information of vehicle under different views. The experiments conducted on three datasets show that our model outperforms state-of-the-art methods by a large margin.
Abstract:Active learning is to design label-efficient algorithms by sampling the most representative samples to be labeled by an oracle. In this paper, we propose a state relabeling adversarial active learning model (SRAAL), that leverages both the annotation and the labeled/unlabeled state information for deriving the most informative unlabeled samples. The SRAAL consists of a representation generator and a state discriminator. The generator uses the complementary annotation information with traditional reconstruction information to generate the unified representation of samples, which embeds the semantic into the whole data representation. Then, we design an online uncertainty indicator in the discriminator, which endues unlabeled samples with different importance. As a result, we can select the most informative samples based on the discriminator's predicted state. We also design an algorithm to initialize the labeled pool, which makes subsequent sampling more efficient. The experiments conducted on various datasets show that our model outperforms the previous state-of-art active learning methods and our initially sampling algorithm achieves better performance.