Abstract:In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.
Abstract:Traditional domain generalization methods often rely on domain alignment to reduce inter-domain distribution differences and learn domain-invariant representations. However, domain shifts are inherently difficult to eliminate, which limits model generalization. To address this, we propose an innovative framework that enhances data representation quality through probabilistic modeling and contrastive learning, reducing dependence on domain alignment and improving robustness under domain variations. Specifically, we combine deterministic features with uncertainty modeling to capture comprehensive feature distributions. Contrastive learning enforces distribution-level alignment by aligning the mean and covariance of feature distributions, enabling the model to dynamically adapt to domain variations and mitigate distribution shifts. Additionally, we design a frequency-domain-based structural enhancement strategy using discrete wavelet transforms to preserve critical structural details and reduce visual distortions caused by style variations. Experimental results demonstrate that the proposed framework significantly improves segmentation performance, providing a robust solution to domain generalization challenges in medical image segmentation.
Abstract:Domain-invariant representation learning is a powerful method for domain generalization. Previous approaches face challenges such as high computational demands, training instability, and limited effectiveness with high-dimensional data, potentially leading to the loss of valuable features. To address these issues, we hypothesize that an ideal generalized representation should exhibit similar pattern responses within the same channel across cross-domain images. Based on this hypothesis, we use deep features from the source domain as queries, and deep features from the generated domain as keys and values. Through a cross-channel attention mechanism, the original deep features are reconstructed into robust regularization representations, forming an explicit constraint that guides the model to learn domain-invariant representations. Additionally, style augmentation is another common method. However, existing methods typically generate new styles through convex combinations of source domains, which limits the diversity of training samples by confining the generated styles to the original distribution. To overcome this limitation, we propose an Adaptive Feature Blending (AFB) method that generates out-of-distribution samples while exploring the in-distribution space, significantly expanding the domain range. Extensive experimental results demonstrate that our proposed methods achieve superior performance on two standard domain generalization benchmarks for medical image segmentation.