Abstract:Recent advances on Multi-modal Large Language Models have demonstrated that high-resolution image input is crucial for model capabilities, especially for fine-grained tasks. However, high-resolution images lead to a quadratic increase in the number of visual tokens input into LLMs, resulting in significant computational costs. Current work develop visual token compression methods to achieve efficiency improvements, often at the expense of performance. We argue that removing visual redundancy can simultaneously improve both efficiency and performance. We build a coarse-to-fine visual token compression method, with a vision-guided sampler for compressing redundant regions with low information density, and a text-guided sampler for selecting visual tokens that are strongly correlated with the user instructions.With these two modules, the proposed FocusLLaVA achieves improvements in both efficiency and performance. We validate the effectiveness of our approach on a wide range of evaluation datasets.
Abstract:Human-object interaction (HOI) detection is an important part of understanding human activities and visual scenes. The long-tailed distribution of labeled instances is a primary challenge in HOI detection, promoting research in few-shot and zero-shot learning. Inspired by the combinatorial nature of HOI triplets, some existing approaches adopt the idea of compositional learning, in which object and action features are learned individually and re-composed as new training samples. However, these methods follow the CNN-based two-stage paradigm with limited feature extraction ability, and often rely on auxiliary information for better performance. Without introducing any additional information, we creatively propose a transformer-based framework for compositional HOI learning. Human-object pair representations and interaction representations are re-composed across different HOI instances, which involves richer contextual information and promotes the generalization of knowledge. Experiments show our simple but effective method achieves state-of-the-art performance, especially on rare HOI classes.
Abstract:Detecting objects based on language descriptions is a popular task that includes Open-Vocabulary object Detection (OVD) and Referring Expression Comprehension (REC). In this paper, we advance them to a more practical setting called Described Object Detection (DOD) by expanding category names to flexible language expressions for OVD and overcoming the limitation of REC to only grounding the pre-existing object. We establish the research foundation for DOD tasks by constructing a Description Detection Dataset ($D^3$), featuring flexible language expressions and annotating all described objects without omission. By evaluating previous SOTA methods on $D^3$, we find some troublemakers that fail current REC, OVD, and bi-functional methods. REC methods struggle with confidence scores, rejecting negative instances, and multi-target scenarios, while OVD methods face constraints with long and complex descriptions. Recent bi-functional methods also do not work well on DOD due to their separated training procedures and inference strategies for REC and OVD tasks. Building upon the aforementioned findings, we propose a baseline that largely improves REC methods by reconstructing the training data and introducing a binary classification sub-task, outperforming existing methods. Data and code is available at https://github.com/shikras/d-cube.
Abstract:Unlike most previous HOI methods that focus on learning better human-object features, we propose a novel and complementary approach called category query learning. Such queries are explicitly associated to interaction categories, converted to image specific category representation via a transformer decoder, and learnt via an auxiliary image-level classification task. This idea is motivated by an earlier multi-label image classification method, but is for the first time applied for the challenging human-object interaction classification task. Our method is simple, general and effective. It is validated on three representative HOI baselines and achieves new state-of-the-art results on two benchmarks.