Abstract:Human-object interaction (HOI) detection is an important part of understanding human activities and visual scenes. The long-tailed distribution of labeled instances is a primary challenge in HOI detection, promoting research in few-shot and zero-shot learning. Inspired by the combinatorial nature of HOI triplets, some existing approaches adopt the idea of compositional learning, in which object and action features are learned individually and re-composed as new training samples. However, these methods follow the CNN-based two-stage paradigm with limited feature extraction ability, and often rely on auxiliary information for better performance. Without introducing any additional information, we creatively propose a transformer-based framework for compositional HOI learning. Human-object pair representations and interaction representations are re-composed across different HOI instances, which involves richer contextual information and promotes the generalization of knowledge. Experiments show our simple but effective method achieves state-of-the-art performance, especially on rare HOI classes.
Abstract:Detecting objects based on language descriptions is a popular task that includes Open-Vocabulary object Detection (OVD) and Referring Expression Comprehension (REC). In this paper, we advance them to a more practical setting called Described Object Detection (DOD) by expanding category names to flexible language expressions for OVD and overcoming the limitation of REC to only grounding the pre-existing object. We establish the research foundation for DOD tasks by constructing a Description Detection Dataset ($D^3$), featuring flexible language expressions and annotating all described objects without omission. By evaluating previous SOTA methods on $D^3$, we find some troublemakers that fail current REC, OVD, and bi-functional methods. REC methods struggle with confidence scores, rejecting negative instances, and multi-target scenarios, while OVD methods face constraints with long and complex descriptions. Recent bi-functional methods also do not work well on DOD due to their separated training procedures and inference strategies for REC and OVD tasks. Building upon the aforementioned findings, we propose a baseline that largely improves REC methods by reconstructing the training data and introducing a binary classification sub-task, outperforming existing methods. Data and code is available at https://github.com/shikras/d-cube.
Abstract:Unlike most previous HOI methods that focus on learning better human-object features, we propose a novel and complementary approach called category query learning. Such queries are explicitly associated to interaction categories, converted to image specific category representation via a transformer decoder, and learnt via an auxiliary image-level classification task. This idea is motivated by an earlier multi-label image classification method, but is for the first time applied for the challenging human-object interaction classification task. Our method is simple, general and effective. It is validated on three representative HOI baselines and achieves new state-of-the-art results on two benchmarks.