Abstract:This thesis provides an in-depth structural analysis and efficient algorithmic solutions for tabletop object rearrangement with overhand grasps (TORO), a foundational task in advancing intelligent robotic manipulation. Rearranging multiple objects in a confined workspace presents two primary challenges: sequencing actions to minimize pick-and-place operations - an NP-hard problem in TORO - and determining temporary object placements ("buffer poses") within a cluttered environment, which is essential yet highly complex. For TORO with available external free space, this work investigates the minimum buffer space, or "running buffer size," required for temporary relocations, presenting both theoretical insights and exact algorithms. For TORO without external free space, the concept of lazy buffer verification is introduced, with its efficiency evaluated across various manipulator configurations, including single-arm, dual-arm, and mobile manipulators.
Abstract:Recent advances in Large Language Models (LLMs) have revolutionized code generation, leading to widespread adoption of AI coding tools by developers. However, LLMs can generate license-protected code without providing the necessary license information, leading to potential intellectual property violations during software production. This paper addresses the critical, yet underexplored, issue of license compliance in LLM-generated code by establishing a benchmark to evaluate the ability of LLMs to provide accurate license information for their generated code. To establish this benchmark, we conduct an empirical study to identify a reasonable standard for "striking similarity" that excludes the possibility of independent creation, indicating a copy relationship between the LLM output and certain open-source code. Based on this standard, we propose an evaluation benchmark LiCoEval, to evaluate the license compliance capabilities of LLMs. Using LiCoEval, we evaluate 14 popular LLMs, finding that even top-performing LLMs produce a non-negligible proportion (0.88% to 2.01%) of code strikingly similar to existing open-source implementations. Notably, most LLMs fail to provide accurate license information, particularly for code under copyleft licenses. These findings underscore the urgent need to enhance LLM compliance capabilities in code generation tasks. Our study provides a foundation for future research and development to improve license compliance in AI-assisted software development, contributing to both the protection of open-source software copyrights and the mitigation of legal risks for LLM users.
Abstract:Discovering the semantics of multimodal utterances is essential for understanding human language and enhancing human-machine interactions. Existing methods manifest limitations in leveraging nonverbal information for discerning complex semantics in unsupervised scenarios. This paper introduces a novel unsupervised multimodal clustering method (UMC), making a pioneering contribution to this field. UMC introduces a unique approach to constructing augmentation views for multimodal data, which are then used to perform pre-training to establish well-initialized representations for subsequent clustering. An innovative strategy is proposed to dynamically select high-quality samples as guidance for representation learning, gauged by the density of each sample's nearest neighbors. Besides, it is equipped to automatically determine the optimal value for the top-$K$ parameter in each cluster to refine sample selection. Finally, both high- and low-quality samples are used to learn representations conducive to effective clustering. We build baselines on benchmark multimodal intent and dialogue act datasets. UMC shows remarkable improvements of 2-6\% scores in clustering metrics over state-of-the-art methods, marking the first successful endeavor in this domain. The complete code and data are available at https://github.com/thuiar/UMC.
Abstract:Long-horizon task and motion planning (TAMP) is notoriously difficult to solve, let alone optimally, due to the tight coupling between the interleaved (discrete) task and (continuous) motion planning phases, where each phase on its own is frequently an NP-hard or even PSPACE-hard computational challenge. In this study, we tackle the even more challenging goal of jointly optimizing task and motion plans for a real dual-arm system in which the two arms operate in close vicinity to solve highly constrained tabletop multi-object rearrangement problems. Toward that, we construct a tightly integrated planning and control optimization pipeline, Makespan-Optimized Dual-Arm Planner (MODAP) that combines novel sampling techniques for task planning with state-of-the-art trajectory optimization techniques. Compared to previous state-of-the-art, MODAP produces task and motion plans that better coordinate a dual-arm system, delivering significantly improved execution time improvements while simultaneously ensuring that the resulting time-parameterized trajectory conforms to specified acceleration and jerk limits.
Abstract:Multimodal intent recognition poses significant challenges, requiring the incorporation of non-verbal modalities from real-world contexts to enhance the comprehension of human intentions. Existing benchmark datasets are limited in scale and suffer from difficulties in handling out-of-scope samples that arise in multi-turn conversational interactions. We introduce MIntRec2.0, a large-scale benchmark dataset for multimodal intent recognition in multi-party conversations. It contains 1,245 dialogues with 15,040 samples, each annotated within a new intent taxonomy of 30 fine-grained classes. Besides 9,304 in-scope samples, it also includes 5,736 out-of-scope samples appearing in multi-turn contexts, which naturally occur in real-world scenarios. Furthermore, we provide comprehensive information on the speakers in each utterance, enriching its utility for multi-party conversational research. We establish a general framework supporting the organization of single-turn and multi-turn dialogue data, modality feature extraction, multimodal fusion, as well as in-scope classification and out-of-scope detection. Evaluation benchmarks are built using classic multimodal fusion methods, ChatGPT, and human evaluators. While existing methods incorporating nonverbal information yield improvements, effectively leveraging context information and detecting out-of-scope samples remains a substantial challenge. Notably, large language models exhibit a significant performance gap compared to humans, highlighting the limitations of machine learning methods in the cognitive intent understanding task. We believe that MIntRec2.0 will serve as a valuable resource, providing a pioneering foundation for research in human-machine conversational interactions, and significantly facilitating related applications. The full dataset and codes are available at https://github.com/thuiar/MIntRec2.0.
Abstract:Multimodal intent recognition aims to leverage diverse modalities such as expressions, body movements and tone of speech to comprehend user's intent, constituting a critical task for understanding human language and behavior in real-world multimodal scenarios. Nevertheless, the majority of existing methods ignore potential correlations among different modalities and own limitations in effectively learning semantic features from nonverbal modalities. In this paper, we introduce a token-level contrastive learning method with modality-aware prompting (TCL-MAP) to address the above challenges. To establish an optimal multimodal semantic environment for text modality, we develop a modality-aware prompting module (MAP), which effectively aligns and fuses features from text, video and audio modalities with similarity-based modality alignment and cross-modality attention mechanism. Based on the modality-aware prompt and ground truth labels, the proposed token-level contrastive learning framework (TCL) constructs augmented samples and employs NT-Xent loss on the label token. Specifically, TCL capitalizes on the optimal textual semantic insights derived from intent labels to guide the learning processes of other modalities in return. Extensive experiments show that our method achieves remarkable improvements compared to state-of-the-art methods. Additionally, ablation analyses demonstrate the superiority of the modality-aware prompt over the handcrafted prompt, which holds substantial significance for multimodal prompt learning. The codes are released at https://github.com/thuiar/TCL-MAP.
Abstract:We introduce a novel approach to the executable semantic object rearrangement problem. In this challenge, a robot seeks to create an actionable plan that rearranges objects within a scene according to a pattern dictated by a natural language description. Unlike existing methods such as StructFormer and StructDiffusion, which tackle the issue in two steps by first generating poses and then leveraging a task planner for action plan formulation, our method concurrently addresses pose generation and action planning. We achieve this integration using a Language-Guided Monte-Carlo Tree Search (LGMCTS). Quantitative evaluations are provided on two simulation datasets, and complemented by qualitative tests with a real robot.
Abstract:Effectively performing object rearrangement is an essential skill for mobile manipulators, e.g., setting up a dinner table or organizing a desk. A key challenge in such problems is deciding an appropriate manipulation order for objects to effectively untangle dependencies between objects while considering the necessary motions for realizing the manipulations (e.g., pick and place). To our knowledge, computing time-optimal multi-object rearrangement solutions for mobile manipulators remains a largely untapped research direction. In this research, we propose ORLA*, which leverages delayed (lazy) evaluation in searching for a high-quality object pick and place sequence that considers both end-effector and mobile robot base travel. ORLA* also supports multi-layered rearrangement tasks considering pile stability using machine learning. Employing an optimal solver for finding temporary locations for displacing objects, ORLA* can achieve global optimality. Through extensive simulation and ablation study, we confirm the effectiveness of ORLA* delivering quality solutions for challenging rearrangement instances. Supplementary materials are available at: https://gaokai15.github.io/ORLA-Star/
Abstract:Object rearrangement is a fundamental sub-task in accomplishing a great many physical tasks. As such, effectively executing rearrangement is an important skill for intelligent robots to master. In this study, we conduct the first algorithmic study on optimally solving the problem of Multi-layer Object Rearrangement on a Tabletop (MORT), in which one object may be relocated at a time, and an object can only be moved if other objects do not block its top surface. In addition, any intermediate structure during the reconfiguration process must be physically stable, i.e., it should stand without external support. To tackle the dual challenges of untangling the dependencies between objects and ensuring structural stability, we develop an algorithm that interleaves the computation of the optimal rearrangement plan and structural stability checking. Using a carefully constructed integer linear programming (ILP) model, our algorithm, Stability-aware Integer Programming-based Planner (SIPP), readily scales to optimally solve complex rearrangement problems of 3D structures with over 60 building blocks, with solution quality significantly outperforming natural greedy best-first approaches. Upon the publication of the manuscript, source code and data will be available at https://github.com/arc-l/mort/
Abstract:Effectively rearranging heterogeneous objects constitutes a high-utility skill that an intelligent robot should master. Whereas significant work has been devoted to the grasp synthesis of heterogeneous objects, little attention has been given to the planning for sequentially manipulating such objects. In this work, we examine the long-horizon sequential rearrangement of heterogeneous objects in a tabletop setting, addressing not just generating feasible plans but near-optimal ones. Toward that end, and building on previous methods, including combinatorial algorithms and Monte Carlo tree search-based solutions, we develop state-of-the-art solvers for optimizing two practical objective functions considering key object properties such as size and weight. Thorough simulation studies show that our methods provide significant advantages in handling challenging heterogeneous object rearrangement problems, especially in cluttered settings. Real robot experiments further demonstrate and confirm these advantages. Source code and evaluation data associated with this research will be available at https://github.com/arc-l/TRLB upon the publication of this manuscript.