Abstract:Despite extensive safety training, LLMs are vulnerable to adversarial inputs. In this work, we introduce a simple but powerful attack paradigm, bijection learning, that yields a practically endless set of jailbreak prompts. We exploit language models' advanced reasoning capabilities to teach them invertible languages (bijections) in context, pass encoded queries to the model to bypass built-in safety mechanisms, and finally decode responses back into English, yielding helpful replies to harmful requests. Our approach proves effective on a wide range of frontier language models and harm categories. Bijection learning is an automated and universal attack that grows stronger with scale: larger models with more advanced reasoning capabilities are more susceptible to bijection learning jailbreaks despite stronger safety mechanisms.
Abstract:This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.
Abstract:This work addresses the challenge of providing consistent explanations for predictive models in the presence of model indeterminacy, which arises due to the existence of multiple (nearly) equally well-performing models for a given dataset and task. Despite their similar performance, such models often exhibit inconsistent or even contradictory explanations for their predictions, posing challenges to end users who rely on these models to make critical decisions. Recognizing this issue, we introduce ensemble methods as an approach to enhance the consistency of the explanations provided in these scenarios. Leveraging insights from recent work on neural network loss landscapes and mode connectivity, we devise ensemble strategies to efficiently explore the underspecification set -- the set of models with performance variations resulting solely from changes in the random seed during training. Experiments on five benchmark financial datasets reveal that ensembling can yield significant improvements when it comes to explanation similarity, and demonstrate the potential of existing ensemble methods to explore the underspecification set efficiently. Our findings highlight the importance of considering model indeterminacy when interpreting explanations and showcase the effectiveness of ensembles in enhancing the reliability of explanations in machine learning.
Abstract:It is well-known that modern computer vision systems often exhibit behaviors misaligned with those of humans: from adversarial attacks to image corruptions, deep learning vision models suffer in a variety of settings that humans capably handle. In light of these phenomena, here we introduce another, orthogonal perspective studying the human-machine vision gap. We revisit the task of recovering images under degradation, first introduced over 30 years ago in the Recognition-by-Components theory of human vision. Specifically, we study the performance and behavior of neural networks on the seemingly simple task of classifying regular polygons at varying orders of degradation along their perimeters. To this end, we implement the Automated Shape Recoverability Test for rapidly generating large-scale datasets of perimeter-degraded regular polygons, modernizing the historically manual creation of image recoverability experiments. We then investigate the capacity of neural networks to recognize and recover such degraded shapes when initialized with different priors. Ultimately, we find that neural networks' behavior on this simple task conflicts with human behavior, raising a fundamental question of the robustness and learning capabilities of modern computer vision models.
Abstract:We consider the emerging problem of identifying the presence and use of watermarking schemes in widely used, publicly hosted, closed source large language models (LLMs). We introduce a suite of baseline algorithms for identifying watermarks in LLMs that rely on analyzing distributions of output tokens and logits generated by watermarked and unmarked LLMs. Notably, watermarked LLMs tend to produce distributions that diverge qualitatively and identifiably from standard models. Furthermore, we investigate the identifiability of watermarks at varying strengths and consider the tradeoffs of each of our identification mechanisms with respect to watermarking scenario. Along the way, we formalize the specific problem of identifying watermarks in LLMs, as well as LLM watermarks and watermark detection in general, providing a framework and foundations for studying them.
Abstract:In recent years, knowledge distillation has become a cornerstone of efficiently deployed machine learning, with labs and industries using knowledge distillation to train models that are inexpensive and resource-optimized. Trojan attacks have contemporaneously gained significant prominence, revealing fundamental vulnerabilities in deep learning models. Given the widespread use of knowledge distillation, in this work we seek to exploit the unlabelled data knowledge distillation process to embed Trojans in a student model without introducing conspicuous behavior in the teacher. We ultimately devise a Trojan attack that effectively reduces student accuracy, does not alter teacher performance, and is efficiently constructible in practice.
Abstract:Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
Abstract:Jokes are intentionally written to be funny, but not all jokes are created the same. Some jokes may be fit for a classroom of kindergarteners, but others are best reserved for a more mature audience. While recent work has shown impressive results on humor detection in text, here we instead investigate the more nuanced task of detecting humor subtypes, especially of the less innocent variety. To that end, we introduce a novel jokes dataset filtered from Reddit and solve the subtype classification task using a finetuned Transformer dubbed the Naughtyformer. Moreover, we show that our model is significantly better at detecting offensiveness in jokes compared to state-of-the-art methods.
Abstract:Mathematical reasoning skills are essential for general-purpose intelligent systems to perform tasks from grocery shopping to climate modeling. Towards evaluating and improving AI systems in this domain, we propose LILA, a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions: (i) mathematical abilities e.g., arithmetic, calculus (ii) language format e.g., question-answering, fill-in-the-blanks (iii) language diversity e.g., no language, simple language (iv) external knowledge e.g., commonsense, physics. We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs, thereby obtaining explainable solutions in addition to the correct answer. We additionally introduce two evaluation datasets to measure out-of-distribution performance and robustness to language perturbation. Finally, we introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA. Importantly, we find that multi-tasking leads to significant improvements (average relative improvement of 21.83% F1 score vs. single-task models), while the best performing model only obtains 60.40%, indicating the room for improvement in general mathematical reasoning and understanding.
Abstract:Can a machine learn machine learning? We propose to answer this question using the same criteria we use to answer a similar question: can a human learn machine learning? We automatically answer MIT final exams in Introduction to Machine Learning at a human level. The course is a large undergraduate class with around five hundred students each semester. Recently, program synthesis and few-shot learning solved university-level problem set questions in mathematics and STEM courses at a human level. In this work, we solve questions from final exams that differ from problem sets in several ways: the questions are longer, have multiple parts, are more complicated, and span a broader set of topics. We provide a new dataset and benchmark of questions from eight MIT Introduction to Machine Learning final exams between Fall 2017 and Spring 2022 and provide code for automatically answering these questions and generating new questions. We perform ablation studies comparing zero-shot learning with few-shot learning, chain-of-thought prompting, GPT-3 pre-trained on text and Codex fine-tuned on code on a range of machine learning topics and find that few-shot learning methods perform best. We make our data and code publicly available for the machine learning community.