Abstract:Data Attribution (DA) methods quantify the influence of individual training data points on model outputs and have broad applications such as explainability, data selection, and noisy label identification. However, existing DA methods are often computationally intensive, limiting their applicability to large-scale machine learning models. To address this challenge, we introduce the Generalized Group Data Attribution (GGDA) framework, which computationally simplifies DA by attributing to groups of training points instead of individual ones. GGDA is a general framework that subsumes existing attribution methods and can be applied to new DA techniques as they emerge. It allows users to optimize the trade-off between efficiency and fidelity based on their needs. Our empirical results demonstrate that GGDA applied to popular DA methods such as Influence Functions, TracIn, and TRAK results in upto 10x-50x speedups over standard DA methods while gracefully trading off attribution fidelity. For downstream applications such as dataset pruning and noisy label identification, we demonstrate that GGDA significantly improves computational efficiency and maintains effectiveness, enabling practical applications in large-scale machine learning scenarios that were previously infeasible.
Abstract:The leakage of benchmark data into the training data has emerged as a significant challenge for evaluating the capabilities of large language models (LLMs). In this work, we use experimental evidence and theoretical estimates to challenge the common assumption that small-scale contamination renders benchmark evaluations invalid. First, we experimentally quantify the magnitude of benchmark overfitting based on scaling along three dimensions: The number of model parameters (up to 1.6B), the number of times an example is seen (up to 144), and the number of training tokens (up to 40B). We find that if model and data follow the Chinchilla scaling laws, minor contamination indeed leads to overfitting. At the same time, even 144 times of contamination can be forgotten if the training data is scaled beyond five times Chinchilla, a regime characteristic of many modern LLMs. We then derive a simple theory of example forgetting via cumulative weight decay. It allows us to bound the number of gradient steps required to forget past data for any training run where we know the hyperparameters of AdamW. This indicates that many LLMs, including Llama 3, have forgotten the data seen at the beginning of training. Experimentally, we demonstrate that forgetting occurs faster than what is predicted by our bounds. Taken together, our results suggest that moderate amounts of contamination can be forgotten at the end of realistically scaled training runs.
Abstract:Do different generative image models secretly learn similar underlying representations? We investigate this by measuring the latent space similarity of four different models: VAEs, GANs, Normalizing Flows (NFs), and Diffusion Models (DMs). Our methodology involves training linear maps between frozen latent spaces to "stitch" arbitrary pairs of encoders and decoders and measuring output-based and probe-based metrics on the resulting "stitched'' models. Our main findings are that linear maps between latent spaces of performant models preserve most visual information even when latent sizes differ; for CelebA models, gender is the most similarly represented probe-able attribute. Finally we show on an NF that latent space representations converge early in training.
Abstract:CLIP embeddings have demonstrated remarkable performance across a wide range of computer vision tasks. However, these high-dimensional, dense vector representations are not easily interpretable, restricting their usefulness in downstream applications that require transparency. In this work, we empirically show that CLIP's latent space is highly structured, and consequently that CLIP representations can be decomposed into their underlying semantic components. We leverage this understanding to propose a novel method, Sparse Linear Concept Embeddings (SpLiCE), for transforming CLIP representations into sparse linear combinations of human-interpretable concepts. Distinct from previous work, SpLiCE does not require concept labels and can be applied post hoc. Through extensive experimentation with multiple real-world datasets, we validate that the representations output by SpLiCE can explain and even replace traditional dense CLIP representations, maintaining equivalent downstream performance while significantly improving their interpretability. We also demonstrate several use cases of SpLiCE representations including detecting spurious correlations, model editing, and quantifying semantic shifts in datasets.
Abstract:Large language models (LLMs) released for public use incorporate guardrails to ensure their output is safe, often referred to as "model alignment." An aligned language model should decline a user's request to produce harmful content. However, such safety measures are vulnerable to adversarial prompts, which contain maliciously designed token sequences to circumvent the model's safety guards and cause it to produce harmful content. In this work, we introduce erase-and-check, the first framework to defend against adversarial prompts with verifiable safety guarantees. We erase tokens individually and inspect the resulting subsequences using a safety filter. Our procedure labels the input prompt as harmful if any subsequences or the input prompt are detected as harmful by the filter. This guarantees that any adversarial modification of a harmful prompt up to a certain size is also labeled harmful. We defend against three attack modes: i) adversarial suffix, which appends an adversarial sequence at the end of the prompt; ii) adversarial insertion, where the adversarial sequence is inserted anywhere in the middle of the prompt; and iii) adversarial infusion, where adversarial tokens are inserted at arbitrary positions in the prompt, not necessarily as a contiguous block. Empirical results demonstrate that our technique obtains strong certified safety guarantees on harmful prompts while maintaining good performance on safe prompts. For example, against adversarial suffixes of length 20, it certifiably detects 93% of the harmful prompts and labels 94% of the safe prompts as safe using the open source language model Llama 2 as the safety filter.
Abstract:With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to explain models. Post hoc explanation methods explain the behaviour of complex black-box models by highlighting features that are critical to model predictions; however, prior work has shown that these explanations may not be faithful, and even more concerning is our inability to verify them. Specifically, it is nontrivial to evaluate if a given attribution is correct with respect to the underlying model. Inherently interpretable models, on the other hand, circumvent these issues by explicitly encoding explanations into model architecture, meaning their explanations are naturally faithful and verifiable, but they often exhibit poor predictive performance due to their limited expressive power. In this work, we aim to bridge the gap between the aforementioned strategies by proposing Verifiability Tuning (VerT), a method that transforms black-box models into models that naturally yield faithful and verifiable feature attributions. We begin by introducing a formal theoretical framework to understand verifiability and show that attributions produced by standard models cannot be verified. We then leverage this framework to propose a method to build verifiable models and feature attributions out of fully trained black-box models. Finally, we perform extensive experiments on semi-synthetic and real-world datasets, and show that VerT produces models that (1) yield explanations that are correct and verifiable and (2) are faithful to the original black-box models they are meant to explain.
Abstract:Machine learning models often need to be robust to noisy input data. The effect of real-world noise (which is often random) on model predictions is captured by a model's local robustness, i.e., the consistency of model predictions in a local region around an input. However, the na\"ive approach to computing local robustness based on Monte-Carlo sampling is statistically inefficient, leading to prohibitive computational costs for large-scale applications. In this work, we develop the first analytical estimators to efficiently compute local robustness of multi-class discriminative models using local linear function approximation and the multivariate Normal CDF. Through the derivation of these estimators, we show how local robustness is connected to concepts such as randomized smoothing and softmax probability. We also confirm empirically that these estimators accurately and efficiently compute the local robustness of standard deep learning models. In addition, we demonstrate these estimators' usefulness for various tasks involving local robustness, such as measuring robustness bias and identifying examples that are vulnerable to noise perturbation in a dataset. By developing these analytical estimators, this work not only advances conceptual understanding of local robustness, but also makes its computation practical, enabling the use of local robustness in critical downstream applications.
Abstract:This work addresses the challenge of providing consistent explanations for predictive models in the presence of model indeterminacy, which arises due to the existence of multiple (nearly) equally well-performing models for a given dataset and task. Despite their similar performance, such models often exhibit inconsistent or even contradictory explanations for their predictions, posing challenges to end users who rely on these models to make critical decisions. Recognizing this issue, we introduce ensemble methods as an approach to enhance the consistency of the explanations provided in these scenarios. Leveraging insights from recent work on neural network loss landscapes and mode connectivity, we devise ensemble strategies to efficiently explore the underspecification set -- the set of models with performance variations resulting solely from changes in the random seed during training. Experiments on five benchmark financial datasets reveal that ensembling can yield significant improvements when it comes to explanation similarity, and demonstrate the potential of existing ensemble methods to explore the underspecification set efficiently. Our findings highlight the importance of considering model indeterminacy when interpreting explanations and showcase the effectiveness of ensembles in enhancing the reliability of explanations in machine learning.
Abstract:The Right to Explanation is an important regulatory principle that allows individuals to request actionable explanations for algorithmic decisions. However, several technical challenges arise when providing such actionable explanations in practice. For instance, models are periodically retrained to handle dataset shifts. This process may invalidate some of the previously prescribed explanations, thus rendering them unactionable. But, it is unclear if and when such invalidations occur, and what factors determine explanation stability i.e., if an explanation remains unchanged amidst model retraining due to dataset shifts. In this paper, we address the aforementioned gaps and provide one of the first theoretical and empirical characterizations of the factors influencing explanation stability. To this end, we conduct rigorous theoretical analysis to demonstrate that model curvature, weight decay parameters while training, and the magnitude of the dataset shift are key factors that determine the extent of explanation (in)stability. Extensive experimentation with real-world datasets not only validates our theoretical results, but also demonstrates that the aforementioned factors dramatically impact the stability of explanations produced by various state-of-the-art methods.
Abstract:Text-to-image models take a sentence (i.e., prompt) and generate images associated with this input prompt. These models have created award wining-art, videos, and even synthetic datasets. However, text-to-image (T2I) models can generate images that underrepresent minorities based on race and sex. This paper investigates which word in the input prompt is responsible for bias in generated images. We introduce a method for computing scores for each word in the prompt; these scores represent its influence on biases in the model's output. Our method follows the principle of \emph{explaining by removing}, leveraging masked language models to calculate the influence scores. We perform experiments on Stable Diffusion to demonstrate that our method identifies the replication of societal stereotypes in generated images.