Abstract:Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs' task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in \textit{understanding the impact of fine-tuning on the reasoning capabilities of LLMs}. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.
Abstract:The widespread practice of indiscriminate data scraping to fine-tune language models (LMs) raises significant legal and ethical concerns, particularly regarding compliance with data protection laws such as the General Data Protection Regulation (GDPR). This practice often results in the unauthorized use of personal information, prompting growing debate within the academic and regulatory communities. Recent works have introduced the concept of generating unlearnable datasets (by adding imperceptible noise to the clean data), such that the underlying model achieves lower loss during training but fails to generalize to the unseen test setting. Though somewhat effective, these approaches are predominantly designed for images and are limited by several practical constraints like requiring knowledge of the target model. To this end, we introduce RegText, a framework that injects imperceptible spurious correlations into natural language datasets, effectively rendering them unlearnable without affecting semantic content. We demonstrate RegText's utility through rigorous empirical analysis of small and large LMs. Notably, RegText can restrict newer models like GPT-4o and Llama from learning on our generated data, resulting in a drop in their test accuracy compared to their zero-shot performance and paving the way for generating unlearnable text to protect public data.
Abstract:As Large Language Models (LLMs) are increasingly being employed in real-world applications in critical domains such as healthcare, it is important to ensure that the Chain-of-Thought (CoT) reasoning generated by these models faithfully captures their underlying behavior. While LLMs are known to generate CoT reasoning that is appealing to humans, prior studies have shown that these explanations do not accurately reflect the actual behavior of the underlying LLMs. In this work, we explore the promise of three broad approaches commonly employed to steer the behavior of LLMs to enhance the faithfulness of the CoT reasoning generated by LLMs: in-context learning, fine-tuning, and activation editing. Specifically, we introduce novel strategies for in-context learning, fine-tuning, and activation editing aimed at improving the faithfulness of the CoT reasoning. We then carry out extensive empirical analyses with multiple benchmark datasets to explore the promise of these strategies. Our analyses indicate that these strategies offer limited success in improving the faithfulness of the CoT reasoning, with only slight performance enhancements in controlled scenarios. Activation editing demonstrated minimal success, while fine-tuning and in-context learning achieved marginal improvements that failed to generalize across diverse reasoning and truthful question-answering benchmarks. In summary, our work underscores the inherent difficulty in eliciting faithful CoT reasoning from LLMs, suggesting that the current array of approaches may not be sufficient to address this complex challenge.
Abstract:The capabilities of large language models (LLMs) have been progressing at a breathtaking speed, leaving even their own developers grappling with the depth of their potential and risks. While initial steps have been taken to evaluate the safety and alignment of general-knowledge LLMs, exposing some weaknesses, to our knowledge, the safety and alignment of medical LLMs has not been evaluated despite their risks for personal health and safety, public health and safety, and human rights. To this end, we carry out the first safety evaluation for medical LLMs. Specifically, we set forth a definition of medical safety and alignment for medical artificial intelligence systems, develop a dataset of harmful medical questions to evaluate the medical safety and alignment of an LLM, evaluate both general and medical safety and alignment of medical LLMs, demonstrate fine-tuning as an effective mitigation strategy, and discuss broader, large-scale approaches used by the machine learning community to develop safe and aligned LLMs. We hope that this work casts light on the safety and alignment of medical LLMs and motivates future work to study it and develop additional mitigation strategies, minimizing the risks of harm of LLMs in medicine.
Abstract:The development of Large Language Models (LLMs) has notably transformed numerous sectors, offering impressive text generation capabilities. Yet, the reliability and truthfulness of these models remain pressing concerns. To this end, we investigate iterative prompting, a strategy hypothesized to refine LLM responses, assessing its impact on LLM truthfulness, an area which has not been thoroughly explored. Our extensive experiments delve into the intricacies of iterative prompting variants, examining their influence on the accuracy and calibration of model responses. Our findings reveal that naive prompting methods significantly undermine truthfulness, leading to exacerbated calibration errors. In response to these challenges, we introduce several prompting variants designed to address the identified issues. These variants demonstrate marked improvements over existing baselines, signaling a promising direction for future research. Our work provides a nuanced understanding of iterative prompting and introduces novel approaches to enhance the truthfulness of LLMs, thereby contributing to the development of more accurate and trustworthy AI systems.
Abstract:Large Language Models (LLMs) are deployed as powerful tools for several natural language processing (NLP) applications. Recent works show that modern LLMs can generate self-explanations (SEs), which elicit their intermediate reasoning steps for explaining their behavior. Self-explanations have seen widespread adoption owing to their conversational and plausible nature. However, there is little to no understanding of their faithfulness. In this work, we discuss the dichotomy between faithfulness and plausibility in SEs generated by LLMs. We argue that while LLMs are adept at generating plausible explanations -- seemingly logical and coherent to human users -- these explanations do not necessarily align with the reasoning processes of the LLMs, raising concerns about their faithfulness. We highlight that the current trend towards increasing the plausibility of explanations, primarily driven by the demand for user-friendly interfaces, may come at the cost of diminishing their faithfulness. We assert that the faithfulness of explanations is critical in LLMs employed for high-stakes decision-making. Moreover, we urge the community to identify the faithfulness requirements of real-world applications and ensure explanations meet those needs. Finally, we propose some directions for future work, emphasizing the need for novel methodologies and frameworks that can enhance the faithfulness of self-explanations without compromising their plausibility, essential for the transparent deployment of LLMs in diverse high-stakes domains.
Abstract:Large Language Models (LLMs) are increasingly used as powerful tools for several high-stakes natural language processing (NLP) applications. Recent prompting works claim to elicit intermediate reasoning steps and key tokens that serve as proxy explanations for LLM predictions. However, there is no certainty whether these explanations are reliable and reflect the LLMs behavior. In this work, we make one of the first attempts at quantifying the uncertainty in explanations of LLMs. To this end, we propose two novel metrics -- $\textit{Verbalized Uncertainty}$ and $\textit{Probing Uncertainty}$ -- to quantify the uncertainty of generated explanations. While verbalized uncertainty involves prompting the LLM to express its confidence in its explanations, probing uncertainty leverages sample and model perturbations as a means to quantify the uncertainty. Our empirical analysis of benchmark datasets reveals that verbalized uncertainty is not a reliable estimate of explanation confidence. Further, we show that the probing uncertainty estimates are correlated with the faithfulness of an explanation, with lower uncertainty corresponding to explanations with higher faithfulness. Our study provides insights into the challenges and opportunities of quantifying uncertainty in LLM explanations, contributing to the broader discussion of the trustworthiness of foundation models.
Abstract:Large Language Models (LLMs) are increasingly used as powerful tools for a plethora of natural language processing (NLP) applications. A recent innovation, in-context learning (ICL), enables LLMs to learn new tasks by supplying a few examples in the prompt during inference time, thereby eliminating the need for model fine-tuning. While LLMs have been utilized in several applications, their applicability in explaining the behavior of other models remains relatively unexplored. Despite the growing number of new explanation techniques, many require white-box access to the model and/or are computationally expensive, highlighting a need for next-generation post hoc explainers. In this work, we present the first framework to study the effectiveness of LLMs in explaining other predictive models. More specifically, we propose a novel framework encompassing multiple prompting strategies: i) Perturbation-based ICL, ii) Prediction-based ICL, iii) Instruction-based ICL, and iv) Explanation-based ICL, with varying levels of information about the underlying ML model and the local neighborhood of the test sample. We conduct extensive experiments with real-world benchmark datasets to demonstrate that LLM-generated explanations perform on par with state-of-the-art post hoc explainers using their ability to leverage ICL examples and their internal knowledge in generating model explanations. On average, across four datasets and two ML models, we observe that LLMs identify the most important feature with 72.19% accuracy, opening up new frontiers in explainable artificial intelligence (XAI) to explore LLM-based explanation frameworks.
Abstract:As machine learning models are increasingly being employed in various high-stakes settings, it becomes important to ensure that predictions of these models are not only adversarially robust, but also readily explainable to relevant stakeholders. However, it is unclear if these two notions can be simultaneously achieved or if there exist trade-offs between them. In this work, we make one of the first attempts at studying the impact of adversarially robust models on actionable explanations which provide end users with a means for recourse. We theoretically and empirically analyze the cost (ease of implementation) and validity (probability of obtaining a positive model prediction) of recourses output by state-of-the-art algorithms when the underlying models are adversarially robust vs. non-robust. More specifically, we derive theoretical bounds on the differences between the cost and the validity of the recourses generated by state-of-the-art algorithms for adversarially robust vs. non-robust linear and non-linear models. Our empirical results with multiple real-world datasets validate our theoretical results and show the impact of varying degrees of model robustness on the cost and validity of the resulting recourses. Our analyses demonstrate that adversarially robust models significantly increase the cost and reduce the validity of the resulting recourses, thus shedding light on the inherent trade-offs between adversarial robustness and actionable explanations
Abstract:Large language models (LLMs) released for public use incorporate guardrails to ensure their output is safe, often referred to as "model alignment." An aligned language model should decline a user's request to produce harmful content. However, such safety measures are vulnerable to adversarial prompts, which contain maliciously designed token sequences to circumvent the model's safety guards and cause it to produce harmful content. In this work, we introduce erase-and-check, the first framework to defend against adversarial prompts with verifiable safety guarantees. We erase tokens individually and inspect the resulting subsequences using a safety filter. Our procedure labels the input prompt as harmful if any subsequences or the input prompt are detected as harmful by the filter. This guarantees that any adversarial modification of a harmful prompt up to a certain size is also labeled harmful. We defend against three attack modes: i) adversarial suffix, which appends an adversarial sequence at the end of the prompt; ii) adversarial insertion, where the adversarial sequence is inserted anywhere in the middle of the prompt; and iii) adversarial infusion, where adversarial tokens are inserted at arbitrary positions in the prompt, not necessarily as a contiguous block. Empirical results demonstrate that our technique obtains strong certified safety guarantees on harmful prompts while maintaining good performance on safe prompts. For example, against adversarial suffixes of length 20, it certifiably detects 93% of the harmful prompts and labels 94% of the safe prompts as safe using the open source language model Llama 2 as the safety filter.