Abstract:Data augmentation methods, especially SoTA interpolation-based methods such as Fair Mixup, have been widely shown to increase model fairness. However, this fairness is evaluated on metrics that do not capture model uncertainty and on datasets with only one, relatively large, minority group. As a remedy, multicalibration has been introduced to measure fairness while accommodating uncertainty and accounting for multiple minority groups. However, existing methods of improving multicalibration involve reducing initial training data to create a holdout set for post-processing, which is not ideal when minority training data is already sparse. This paper uses multicalibration to more rigorously examine data augmentation for classification fairness. We stress-test four versions of Fair Mixup on two structured data classification problems with up to 81 marginalized groups, evaluating multicalibration violations and balanced accuracy. We find that on nearly every experiment, Fair Mixup \textit{worsens} baseline performance and fairness, but the simple vanilla Mixup \textit{outperforms} both Fair Mixup and the baseline, especially when calibrating on small groups. \textit{Combining} vanilla Mixup with multicalibration post-processing, which enforces multicalibration through post-processing on a holdout set, further increases fairness.
Abstract:Do different generative image models secretly learn similar underlying representations? We investigate this by measuring the latent space similarity of four different models: VAEs, GANs, Normalizing Flows (NFs), and Diffusion Models (DMs). Our methodology involves training linear maps between frozen latent spaces to "stitch" arbitrary pairs of encoders and decoders and measuring output-based and probe-based metrics on the resulting "stitched'' models. Our main findings are that linear maps between latent spaces of performant models preserve most visual information even when latent sizes differ; for CelebA models, gender is the most similarly represented probe-able attribute. Finally we show on an NF that latent space representations converge early in training.
Abstract:A common way to explore text corpora is through low-dimensional projections of the documents, where one hopes that thematically similar documents will be clustered together in the projected space. However, popular algorithms for dimensionality reduction of text corpora, like Latent Dirichlet Allocation (LDA), often produce projections that do not capture human notions of document similarity. We propose a semi-supervised human-in-the-loop LDA-based method for learning topics that preserve semantically meaningful relationships between documents in low-dimensional projections. On synthetic corpora, our method yields more interpretable projections than baseline methods with only a fraction of labels provided. On a real corpus, we obtain qualitatively similar results.
Abstract:Chain-of-thought (CoT) prompting has been shown to empirically improve the accuracy of large language models (LLMs) on various question answering tasks. While understanding why CoT prompting is effective is crucial to ensuring that this phenomenon is a consequence of desired model behavior, little work has addressed this; nonetheless, such an understanding is a critical prerequisite for responsible model deployment. We address this question by leveraging gradient-based feature attribution methods which produce saliency scores that capture the influence of input tokens on model output. Specifically, we probe several open-source LLMs to investigate whether CoT prompting affects the relative importances they assign to particular input tokens. Our results indicate that while CoT prompting does not increase the magnitude of saliency scores attributed to semantically relevant tokens in the prompt compared to standard few-shot prompting, it increases the robustness of saliency scores to question perturbations and variations in model output.