Abstract:Matrix-valued optimization tasks, including those involving symmetric positive definite (SPD) matrices, arise in a wide range of applications in machine learning, data science and statistics. Classically, such problems are solved via constrained Euclidean optimization, where the domain is viewed as a Euclidean space and the structure of the matrices (e.g., positive definiteness) enters as constraints. More recently, geometric approaches that leverage parametrizations of the problem as unconstrained tasks on the corresponding matrix manifold have been proposed. While they exhibit algorithmic benefits in many settings, they cannot directly handle additional constraints, such as inequality or sparsity constraints. A remedy comes in the form of constrained Riemannian optimization methods, notably, Riemannian Frank-Wolfe and Projected Gradient Descent. However, both algorithms require potentially expensive subroutines that can introduce computational bottlenecks in practise. To mitigate these shortcomings, we introduce a class of structured regularizers, based on symmetric gauge functions, which allow for solving constrained optimization on the SPD manifold with faster unconstrained methods. We show that our structured regularizers can be chosen to preserve or induce desirable structure, in particular convexity and "difference of convex" structure. We demonstrate the effectiveness of our approach in numerical experiments.
Abstract:Data with geometric structure is ubiquitous in machine learning often arising from fundamental symmetries in a domain, such as permutation-invariance in graphs and translation-invariance in images. Group-convolutional architectures, which encode symmetries as inductive bias, have shown great success in applications, but can suffer from instabilities as their depth increases and often struggle to learn long range dependencies in data. For instance, graph neural networks experience instability due to the convergence of node representations (over-smoothing), which can occur after only a few iterations of message-passing, reducing their effectiveness in downstream tasks. Here, we propose and study unitary group convolutions, which allow for deeper networks that are more stable during training. The main focus of the paper are graph neural networks, where we show that unitary graph convolutions provably avoid over-smoothing. Our experimental results confirm that unitary graph convolutional networks achieve competitive performance on benchmark datasets compared to state-of-the-art graph neural networks. We complement our analysis of the graph domain with the study of general unitary convolutions and analyze their role in enhancing stability in general group convolutional architectures.
Abstract:The quest for robust and generalizable machine learning models has driven recent interest in exploiting symmetries through equivariant neural networks. In the context of PDE solvers, recent works have shown that Lie point symmetries can be a useful inductive bias for Physics-Informed Neural Networks (PINNs) through data and loss augmentation. Despite this, directly enforcing equivariance within the model architecture for these problems remains elusive. This is because many PDEs admit non-compact symmetry groups, oftentimes not studied beyond their infinitesimal generators, making them incompatible with most existing equivariant architectures. In this work, we propose Lie aLgebrA Canonicalization (LieLAC), a novel approach that exploits only the action of infinitesimal generators of the symmetry group, circumventing the need for knowledge of the full group structure. To achieve this, we address existing theoretical issues in the canonicalization literature, establishing connections with frame averaging in the case of continuous non-compact groups. Operating within the framework of canonicalization, LieLAC can easily be integrated with unconstrained pre-trained models, transforming inputs to a canonical form before feeding them into the existing model, effectively aligning the input for model inference according to allowed symmetries. LieLAC utilizes standard Lie group descent schemes, achieving equivariance in pre-trained models. Finally, we showcase LieLAC's efficacy on tasks of invariant image classification and Lie point symmetry equivariant neural PDE solvers using pre-trained models.
Abstract:Convex programming plays a fundamental role in machine learning, data science, and engineering. Testing convexity structure in nonlinear programs relies on verifying the convexity of objectives and constraints. \citet{grant2006disciplined} introduced a framework, Disciplined Convex Programming (DCP), for automating this verification task for a wide range of convex functions that can be decomposed into basic convex functions (atoms) using convexity-preserving compositions and transformations (rules). However, the restriction to Euclidean convexity concepts can limit the applicability of the framework. For instance, many notable instances of statistical estimators and matrix-valued (sub)routines in machine learning applications are Euclidean non-convex, but exhibit geodesic convexity through a more general Riemannian lens. In this work, we extend disciplined programming to this setting by introducing Disciplined Geodesically Convex Programming (DGCP). We determine convexity-preserving compositions and transformations for geodesically convex functions on general Cartan-Hadamard manifolds, as well as for the special case of symmetric positive definite matrices, a common setting in matrix-valued optimization. For the latter, we also define a basic set of atoms. Our paper is accompanied by a Julia package SymbolicAnalysis.jl, which provides functionality for testing and certifying DGCP-compliant expressions. Our library interfaces with manifold optimization software, which allows for directly solving verified geodesically convex programs.
Abstract:Graph Machine Learning often involves the clustering of nodes based on similarity structure encoded in the graph's topology and the nodes' attributes. On homophilous graphs, the integration of pooling layers has been shown to enhance the performance of Graph Neural Networks by accounting for inherent multi-scale structure. Here, similar nodes are grouped together to coarsen the graph and reduce the input size in subsequent layers in deeper architectures. In both settings, the underlying clustering approach can be implemented via graph pooling operators, which often rely on classical tools from Graph Theory. In this work, we introduce a graph pooling operator (ORC-Pool), which utilizes a characterization of the graph's geometry via Ollivier's discrete Ricci curvature and an associated geometric flow. Previous Ricci flow based clustering approaches have shown great promise across several domains, but are by construction unable to account for similarity structure encoded in the node attributes. However, in many ML applications, such information is vital for downstream tasks. ORC-Pool extends such clustering approaches to attributed graphs, allowing for the integration of geometric coarsening into Graph Neural Networks as a pooling layer.
Abstract:The manifold hypothesis presumes that high-dimensional data lies on or near a low-dimensional manifold. While the utility of encoding geometric structure has been demonstrated empirically, rigorous analysis of its impact on the learnability of neural networks is largely missing. Several recent results have established hardness results for learning feedforward and equivariant neural networks under i.i.d. Gaussian or uniform Boolean data distributions. In this paper, we investigate the hardness of learning under the manifold hypothesis. We ask which minimal assumptions on the curvature and regularity of the manifold, if any, render the learning problem efficiently learnable. We prove that learning is hard under input manifolds of bounded curvature by extending proofs of hardness in the SQ and cryptographic settings for Boolean data inputs to the geometric setting. On the other hand, we show that additional assumptions on the volume of the data manifold alleviate these fundamental limitations and guarantee learnability via a simple interpolation argument. Notable instances of this regime are manifolds which can be reliably reconstructed via manifold learning. Looking forward, we comment on and empirically explore intermediate regimes of manifolds, which have heterogeneous features commonly found in real world data.
Abstract:We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational statistical query (CSQ) model, a framework encompassing gradient descent. In this work, we ask: are known problem symmetries sufficient to alleviate the fundamental hardness of learning neural nets with gradient descent? We answer this question in the negative. In particular, we give lower bounds for shallow graph neural networks, convolutional networks, invariant polynomials, and frame-averaged networks for permutation subgroups, which all scale either superpolynomially or exponentially in the relevant input dimension. Therefore, in spite of the significant inductive bias imparted via symmetry, actually learning the complete classes of functions represented by equivariant neural networks via gradient descent remains hard.
Abstract:Structural and Positional Encodings can significantly improve the performance of Graph Neural Networks in downstream tasks. Recent literature has begun to systematically investigate differences in the structural properties that these approaches encode, as well as performance trade-offs between them. However, the question of which structural properties yield the most effective encoding remains open. In this paper, we investigate this question from a geometric perspective. We propose a novel structural encoding based on discrete Ricci curvature (Local Curvature Profiles, short LCP) and show that it significantly outperforms existing encoding approaches. We further show that combining local structural encodings, such as LCP, with global positional encodings improves downstream performance, suggesting that they capture complementary geometric information. Finally, we compare different encoding types with (curvature-based) rewiring techniques. Rewiring has recently received a surge of interest due to its ability to improve the performance of Graph Neural Networks by mitigating over-smoothing and over-squashing effects. Our results suggest that utilizing curvature information for structural encodings delivers significantly larger performance increases than rewiring.
Abstract:While Graph Neural Networks (GNNs) have been successfully leveraged for learning on graph-structured data across domains, several potential pitfalls have been described recently. Those include the inability to accurately leverage information encoded in long-range connections (over-squashing), as well as difficulties distinguishing the learned representations of nearby nodes with growing network depth (over-smoothing). An effective way to characterize both effects is discrete curvature: Long-range connections that underlie over-squashing effects have low curvature, whereas edges that contribute to over-smoothing have high curvature. This observation has given rise to rewiring techniques, which add or remove edges to mitigate over-smoothing and over-squashing. Several rewiring approaches utilizing graph characteristics, such as curvature or the spectrum of the graph Laplacian, have been proposed. However, existing methods, especially those based on curvature, often require expensive subroutines and careful hyperparameter tuning, which limits their applicability to large-scale graphs. Here we propose a rewiring technique based on Augmented Forman-Ricci curvature (AFRC), a scalable curvature notation, which can be computed in linear time. We prove that AFRC effectively characterizes over-smoothing and over-squashing effects in message-passing GNNs. We complement our theoretical results with experiments, which demonstrate that the proposed approach achieves state-of-the-art performance while significantly reducing the computational cost in comparison with other methods. Utilizing fundamental properties of discrete curvature, we propose effective heuristics for hyperparameters in curvature-based rewiring, which avoids expensive hyperparameter searches, further improving the scalability of the proposed approach.
Abstract:Unsupervised node clustering (or community detection) is a classical graph learning task. In this paper, we study algorithms, which exploit the geometry of the graph to identify densely connected substructures, which form clusters or communities. Our method implements discrete Ricci curvatures and their associated geometric flows, under which the edge weights of the graph evolve to reveal its community structure. We consider several discrete curvature notions and analyze the utility of the resulting algorithms. In contrast to prior literature, we study not only single-membership community detection, where each node belongs to exactly one community, but also mixed-membership community detection, where communities may overlap. For the latter, we argue that it is beneficial to perform community detection on the line graph, i.e., the graph's dual. We provide both theoretical and empirical evidence for the utility of our curvature-based clustering algorithms. In addition, we give several results on the relationship between the curvature of a graph and that of its dual, which enable the efficient implementation of our proposed mixed-membership community detection approach and which may be of independent interest for curvature-based network analysis.