Abstract:Matrix-valued optimization tasks, including those involving symmetric positive definite (SPD) matrices, arise in a wide range of applications in machine learning, data science and statistics. Classically, such problems are solved via constrained Euclidean optimization, where the domain is viewed as a Euclidean space and the structure of the matrices (e.g., positive definiteness) enters as constraints. More recently, geometric approaches that leverage parametrizations of the problem as unconstrained tasks on the corresponding matrix manifold have been proposed. While they exhibit algorithmic benefits in many settings, they cannot directly handle additional constraints, such as inequality or sparsity constraints. A remedy comes in the form of constrained Riemannian optimization methods, notably, Riemannian Frank-Wolfe and Projected Gradient Descent. However, both algorithms require potentially expensive subroutines that can introduce computational bottlenecks in practise. To mitigate these shortcomings, we introduce a class of structured regularizers, based on symmetric gauge functions, which allow for solving constrained optimization on the SPD manifold with faster unconstrained methods. We show that our structured regularizers can be chosen to preserve or induce desirable structure, in particular convexity and "difference of convex" structure. We demonstrate the effectiveness of our approach in numerical experiments.
Abstract:Convex programming plays a fundamental role in machine learning, data science, and engineering. Testing convexity structure in nonlinear programs relies on verifying the convexity of objectives and constraints. \citet{grant2006disciplined} introduced a framework, Disciplined Convex Programming (DCP), for automating this verification task for a wide range of convex functions that can be decomposed into basic convex functions (atoms) using convexity-preserving compositions and transformations (rules). However, the restriction to Euclidean convexity concepts can limit the applicability of the framework. For instance, many notable instances of statistical estimators and matrix-valued (sub)routines in machine learning applications are Euclidean non-convex, but exhibit geodesic convexity through a more general Riemannian lens. In this work, we extend disciplined programming to this setting by introducing Disciplined Geodesically Convex Programming (DGCP). We determine convexity-preserving compositions and transformations for geodesically convex functions on general Cartan-Hadamard manifolds, as well as for the special case of symmetric positive definite matrices, a common setting in matrix-valued optimization. For the latter, we also define a basic set of atoms. Our paper is accompanied by a Julia package SymbolicAnalysis.jl, which provides functionality for testing and certifying DGCP-compliant expressions. Our library interfaces with manifold optimization software, which allows for directly solving verified geodesically convex programs.
Abstract:In this paper, we propose a novel nonconvex approach to robust principal component analysis for HSI denoising, which focuses on simultaneously developing more accurate approximations to both rank and column-wise sparsity for the low-rank and sparse components, respectively. In particular, the new method adopts the log-determinant rank approximation and a novel $\ell_{2,\log}$ norm, to restrict the local low-rank or column-wisely sparse properties for the component matrices, respectively. For the $\ell_{2,\log}$-regularized shrinkage problem, we develop an efficient, closed-form solution, which is named $\ell_{2,\log}$-shrinkage operator. The new regularization and the corresponding operator can be generally used in other problems that require column-wise sparsity. Moreover, we impose the spatial-spectral total variation regularization in the log-based nonconvex RPCA model, which enhances the global piece-wise smoothness and spectral consistency from the spatial and spectral views in the recovered HSI. Extensive experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method in denoising HSIs.