Higher-order information is crucial for relational learning in many domains where relationships extend beyond pairwise interactions. Hypergraphs provide a natural framework for modeling such relationships, which has motivated recent extensions of graph neural net- work architectures to hypergraphs. However, comparisons between hypergraph architectures and standard graph-level models remain limited. In this work, we systematically evaluate a selection of hypergraph-level and graph-level architectures, to determine their effectiveness in leveraging higher-order information in relational learning. Our results show that graph-level architectures applied to hypergraph expansions often outperform hypergraph- level ones, even on inputs that are naturally parametrized as hypergraphs. As an alternative approach for leveraging higher-order information, we propose hypergraph-level encodings based on classical hypergraph characteristics. While these encodings do not significantly improve hypergraph architectures, they yield substantial performance gains when combined with graph-level models. Our theoretical analysis shows that hypergraph-level encodings provably increase the representational power of message-passing graph neural networks beyond that of their graph-level counterparts.