Abstract:Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.
Abstract:The Vision Transformer (ViT) leverages the Transformer's encoder to capture global information by dividing images into patches and achieves superior performance across various computer vision tasks. However, the self-attention mechanism of ViT captures the global context from the outset, overlooking the inherent relationships between neighboring pixels in images or videos. Transformers mainly focus on global information while ignoring the fine-grained local details. Consequently, ViT lacks inductive bias during image or video dataset training. In contrast, convolutional neural networks (CNNs), with their reliance on local filters, possess an inherent inductive bias, making them more efficient and quicker to converge than ViT with less data. In this paper, we present a lightweight Depth-Wise Convolution module as a shortcut in ViT models, bypassing entire Transformer blocks to ensure the models capture both local and global information with minimal overhead. Additionally, we introduce two architecture variants, allowing the Depth-Wise Convolution modules to be applied to multiple Transformer blocks for parameter savings, and incorporating independent parallel Depth-Wise Convolution modules with different kernels to enhance the acquisition of local information. The proposed approach significantly boosts the performance of ViT models on image classification, object detection and instance segmentation by a large margin, especially on small datasets, as evaluated on CIFAR-10, CIFAR-100, Tiny-ImageNet and ImageNet for image classification, and COCO for object detection and instance segmentation. The source code can be accessed at https://github.com/ZTX-100/Efficient_ViT_with_DW.
Abstract:In this paper, we propose a novel framework named DRL-CPG to learn disentangled latent representation for controllable person image generation, which can produce realistic person images with desired poses and human attributes (e.g., pose, head, upper clothes, and pants) provided by various source persons. Unlike the existing works leveraging the semantic masks to obtain the representation of each component, we propose to generate disentangled latent code via a novel attribute encoder with transformers trained in a manner of curriculum learning from a relatively easy step to a gradually hard one. A random component mask-agnostic strategy is introduced to randomly remove component masks from the person segmentation masks, which aims at increasing the difficulty of training and promoting the transformer encoder to recognize the underlying boundaries between each component. This enables the model to transfer both the shape and texture of the components. Furthermore, we propose a novel attribute decoder network to integrate multi-level attributes (e.g., the structure feature and the attribute representation) with well-designed Dual Adaptive Denormalization (DAD) residual blocks. Extensive experiments strongly demonstrate that the proposed approach is able to transfer both the texture and shape of different human parts and yield realistic results. To our knowledge, we are the first to learn disentangled latent representations with transformers for person image generation.
Abstract:Arbitrary style transfer has been demonstrated to be efficient in artistic image generation. Previous methods either globally modulate the content feature ignoring local details, or overly focus on the local structure details leading to style leakage. In contrast to the literature, we propose a new scheme \textit{``style kernel"} that learns {\em spatially adaptive kernels} for per-pixel stylization, where the convolutional kernels are dynamically generated from the global style-content aligned feature and then the learned kernels are applied to modulate the content feature at each spatial position. This new scheme allows flexible both global and local interactions between the content and style features such that the wanted styles can be easily transferred to the content image while at the same time the content structure can be easily preserved. To further enhance the flexibility of our style transfer method, we propose a Style Alignment Encoding (SAE) module complemented with a Content-based Gating Modulation (CGM) module for learning the dynamic style kernels in focusing regions. Extensive experiments strongly demonstrate that our proposed method outperforms state-of-the-art methods and exhibits superior performance in terms of visual quality and efficiency.
Abstract:Micro-expressions are spontaneous, rapid and subtle facial movements that can neither be forged nor suppressed. They are very important nonverbal communication clues, but are transient and of low intensity thus difficult to recognize. Recently deep learning based methods have been developed for micro-expression (ME) recognition using feature extraction and fusion techniques, however, targeted feature learning and efficient feature fusion still lack further study according to the ME characteristics. To address these issues, we propose a novel framework Feature Representation Learning with adaptive Displacement Generation and Transformer fusion (FRL-DGT), in which a convolutional Displacement Generation Module (DGM) with self-supervised learning is used to extract dynamic features from onset/apex frames targeted to the subsequent ME recognition task, and a well-designed Transformer Fusion mechanism composed of three Transformer-based fusion modules (local, global fusions based on AU regions and full-face fusion) is applied to extract the multi-level informative features after DGM for the final ME prediction. The extensive experiments with solid leave-one-subject-out (LOSO) evaluation results have demonstrated the superiority of our proposed FRL-DGT to state-of-the-art methods.
Abstract:Vision Transformers have attracted a lot of attention recently since the successful implementation of Vision Transformer (ViT) on vision tasks. With vision Transformers, specifically the multi-head self-attention modules, networks can capture long-term dependencies inherently. However, these attention modules normally need to be trained on large datasets, and vision Transformers show inferior performance on small datasets when training from scratch compared with widely dominant backbones like ResNets. Note that the Transformer model was first proposed for natural language processing, which carries denser information than natural images. To boost the performance of vision Transformers on small datasets, this paper proposes to explicitly increase the input information density in the frequency domain. Specifically, we introduce selecting channels by calculating the channel-wise heatmaps in the frequency domain using Discrete Cosine Transform (DCT), reducing the size of input while keeping most information and hence increasing the information density. As a result, 25% fewer channels are kept while better performance is achieved compared with previous work. Extensive experiments demonstrate the effectiveness of the proposed approach on five small-scale datasets, including CIFAR-10/100, SVHN, Flowers-102, and Tiny ImageNet. The accuracy has been boosted up to 17.05% with Swin and Focal Transformers. Codes are available at https://github.com/xiangyu8/DenseVT.
Abstract:It is critical to obtain high resolution features with long range dependency for dense prediction tasks such as semantic segmentation. To generate high-resolution output of size $H\times W$ from a low-resolution feature map of size $h\times w$ ($hw\ll HW$), a naive dense transformer incurs an intractable complexity of $\mathcal{O}(hwHW)$, limiting its application on high-resolution dense prediction. We propose a Dual-Flattening Transformer (DFlatFormer) to enable high-resolution output by reducing complexity to $\mathcal{O}(hw(H+W))$ that is multiple orders of magnitude smaller than the naive dense transformer. Decomposed queries are presented to retrieve row and column attentions tractably through separate transformers, and their outputs are combined to form a dense feature map at high resolution. To this end, the input sequence fed from an encoder is row-wise and column-wise flattened to align with decomposed queries by preserving their row and column structures, respectively. Row and column transformers also interact with each other to capture their mutual attentions with the spatial crossings between rows and columns. We also propose to perform attentions through efficient grouping and pooling to further reduce the model complexity. Extensive experiments on ADE20K and Cityscapes datasets demonstrate the superiority of the proposed dual-flattening transformer architecture with higher mIoUs.
Abstract:Recent image-to-image translation models have shown great success in mapping local textures between two domains. Existing approaches rely on a cycle-consistency constraint that supervises the generators to learn an inverse mapping. However, learning the inverse mapping introduces extra trainable parameters and it is unable to learn the inverse mapping for some domains. As a result, they are ineffective in the scenarios where (i) multiple visual image domains are involved; (ii) both structure and texture transformations are required; and (iii) semantic consistency is preserved. To solve these challenges, the paper proposes a unified model to translate images across multiple domains with significant domain gaps. Unlike previous models that constrain the generators with the ubiquitous cycle-consistency constraint to achieve the content similarity, the proposed model employs a perceptual self-regularization constraint. With a single unified generator, the model can maintain consistency over the global shapes as well as the local texture information across multiple domains. Extensive qualitative and quantitative evaluations demonstrate the effectiveness and superior performance over state-of-the-art models. It is more effective in representing shape deformation in challenging mappings with significant dataset variation across multiple domains.
Abstract:The paper proposes a Dynamic ResBlock Generative Adversarial Network (DRB-GAN) for artistic style transfer. The style code is modeled as the shared parameters for Dynamic ResBlocks connecting both the style encoding network and the style transfer network. In the style encoding network, a style class-aware attention mechanism is used to attend the style feature representation for generating the style codes. In the style transfer network, multiple Dynamic ResBlocks are designed to integrate the style code and the extracted CNN semantic feature and then feed into the spatial window Layer-Instance Normalization (SW-LIN) decoder, which enables high-quality synthetic images with artistic style transfer. Moreover, the style collection conditional discriminator is designed to equip our DRB-GAN model with abilities for both arbitrary style transfer and collection style transfer during the training stage. No matter for arbitrary style transfer or collection style transfer, extensive experiments strongly demonstrate that our proposed DRB-GAN outperforms state-of-the-art methods and exhibits its superior performance in terms of visual quality and efficiency. Our source code is available at \color{magenta}{\url{https://github.com/xuwenju123/DRB-GAN}}.
Abstract:Existing image captioning methods just focus on understanding the relationship between objects or instances in a single image, without exploring the contextual correlation existed among contextual image. In this paper, we propose Dual Graph Convolutional Networks (Dual-GCN) with transformer and curriculum learning for image captioning. In particular, we not only use an object-level GCN to capture the object to object spatial relation within a single image, but also adopt an image-level GCN to capture the feature information provided by similar images. With the well-designed Dual-GCN, we can make the linguistic transformer better understand the relationship between different objects in a single image and make full use of similar images as auxiliary information to generate a reasonable caption description for a single image. Meanwhile, with a cross-review strategy introduced to determine difficulty levels, we adopt curriculum learning as the training strategy to increase the robustness and generalization of our proposed model. We conduct extensive experiments on the large-scale MS COCO dataset, and the experimental results powerfully demonstrate that our proposed method outperforms recent state-of-the-art approaches. It achieves a BLEU-1 score of 82.2 and a BLEU-2 score of 67.6. Our source code is available at {\em \color{magenta}{\url{https://github.com/Unbear430/DGCN-for-image-captioning}}}.