Virginia Tech
Abstract:Climate change is intensifying rainfall extremes, making high-resolution precipitation projections crucial for society to better prepare for impacts such as flooding. However, current Global Climate Models (GCMs) operate at spatial resolutions too coarse for localized analyses. To address this limitation, deep learning-based statistical downscaling methods offer promising solutions, providing high-resolution precipitation projections with a moderate computational cost. In this work, we introduce a bias-informed conditional diffusion model for statistical downscaling of precipitation. Specifically, our model leverages a conditional diffusion approach to learn distribution priors from large-scale, high-resolution precipitation datasets. The long-tail distribution of precipitation poses a unique challenge for training diffusion models; to address this, we apply gamma correction during preprocessing. Additionally, to correct biases in the downscaled results, we employ a guided-sampling strategy to enhance bias correction. Our experiments demonstrate that the proposed model achieves highly accurate results in an 8 times downscaling setting, outperforming previous deterministic methods. The code and dataset are available at https://github.com/RoseLV/research_super-resolution
Abstract:Early detection through imaging and accurate diagnosis is crucial in mitigating the high mortality rate associated with breast cancer. However, locating tumors from low-resolution and high-noise medical images is extremely challenging. Therefore, this paper proposes a novel PGDiffSeg (Prior-Guided Diffusion Denoising Model with Parameter-Shared Attention) that applies diffusion denoising methods to breast cancer medical image segmentation, accurately recovering the affected areas from Gaussian noise. Firstly, we design a parallel pipeline for noise processing and semantic information processing and propose a parameter-shared attention module (PSA) in multi-layer that seamlessly integrates these two pipelines. This integration empowers PGDiffSeg to incorporate semantic details at multiple levels during the denoising process, producing highly accurate segmentation maps. Secondly, we introduce a guided strategy that leverages prior knowledge to simulate the decision-making process of medical professionals, thereby enhancing the model's ability to locate tumor positions precisely. Finally, we provide the first-ever discussion on the interpretability of the generative diffusion model in the context of breast cancer segmentation. Extensive experiments have demonstrated the superiority of our model over the current state-of-the-art approaches, confirming its effectiveness as a flexible diffusion denoising method suitable for medical image research. Our code will be publicly available later.
Abstract:Recent advancements in Large Language Models (LLMs) have enabled the creation of fake news, particularly in complex fields like healthcare. Studies highlight the gap in the deceptive power of LLM-generated fake news with and without human assistance, yet the potential of prompting techniques has not been fully explored. Thus, this work aims to determine whether prompting strategies can effectively narrow this gap. Current LLM-based fake news attacks require human intervention for information gathering and often miss details and fail to maintain context consistency. Therefore, to better understand threat tactics, we propose a strong fake news attack method called conditional Variational-autoencoder-Like Prompt (VLPrompt). Unlike current methods, VLPrompt eliminates the need for additional data collection while maintaining contextual coherence and preserving the intricacies of the original text. To propel future research on detecting VLPrompt attacks, we created a new dataset named VLPrompt fake news (VLPFN) containing real and fake texts. Our experiments, including various detection methods and novel human study metrics, were conducted to assess their performance on our dataset, yielding numerous findings.
Abstract:Recently a line of researches has delved the use of graph neural networks (GNNs) for decentralized control in swarm robotics. However, it has been observed that relying solely on the states of immediate neighbors is insufficient to imitate a centralized control policy. To address this limitation, prior studies proposed incorporating $L$-hop delayed states into the computation. While this approach shows promise, it can lead to a lack of consensus among distant flock members and the formation of small clusters, consequently resulting in the failure of cohesive flocking behaviors. Instead, our approach leverages spatiotemporal GNN, named STGNN that encompasses both spatial and temporal expansions. The spatial expansion collects delayed states from distant neighbors, while the temporal expansion incorporates previous states from immediate neighbors. The broader and more comprehensive information gathered from both expansions results in more effective and accurate predictions. We develop an expert algorithm for controlling a swarm of robots and employ imitation learning to train our decentralized STGNN model based on the expert algorithm. We simulate the proposed STGNN approach in various settings, demonstrating its decentralized capacity to emulate the global expert algorithm. Further, we implemented our approach to achieve cohesive flocking, leader following and obstacle avoidance by a group of Crazyflie drones. The performance of STGNN underscores its potential as an effective and reliable approach for achieving cohesive flocking, leader following and obstacle avoidance tasks.
Abstract:The prompt estimation of traffic incident impacts can guide commuters in their trip planning and improve the resilience of transportation agencies' decision-making on resilience. However, it is more challenging than node-level and graph-level forecasting tasks, as it requires extracting the anomaly subgraph or sub-time-series from dynamic graphs. In this paper, we propose DG-Trans, a novel traffic incident impact prediction framework, to foresee the impact of traffic incidents through dynamic graph learning. The proposed framework contains a dual-level spatial transformer and an importance-score-based temporal transformer, and the performance of this framework is justified by two newly constructed benchmark datasets. The dual-level spatial transformer removes unnecessary edges between nodes to isolate the affected subgraph from the other nodes. Meanwhile, the importance-score-based temporal transformer identifies abnormal changes in node features, causing the predictions to rely more on measurement changes after the incident occurs. Therefore, DG-Trans is equipped with dual abilities that extract spatiotemporal dependency and identify anomaly nodes affected by incidents while removing noise introduced by benign nodes. Extensive experiments on real-world datasets verify that DG-Trans outperforms the existing state-of-the-art methods, especially in extracting spatiotemporal dependency patterns and predicting traffic accident impacts. It offers promising potential for traffic incident management systems.