Abstract:Incorporating external knowledge into large language models (LLMs) has emerged as a promising approach to mitigate outdated knowledge and hallucination in LLMs. However, external knowledge is often imperfect. In addition to useful knowledge, external knowledge is rich in irrelevant or misinformation in the context that can impair the reliability of LLM responses. This paper focuses on LLMs' preferred external knowledge in imperfect contexts when handling multi-hop QA. Inspired by criminal procedural law's Chain of Evidence (CoE), we characterize that knowledge preferred by LLMs should maintain both relevance to the question and mutual support among knowledge pieces. Accordingly, we propose an automated CoE discrimination approach and explore LLMs' preferences from their effectiveness, faithfulness and robustness, as well as CoE's usability in a naive Retrieval-Augmented Generation (RAG) case. The evaluation on five LLMs reveals that CoE enhances LLMs through more accurate generation, stronger answer faithfulness, better robustness against knowledge conflict, and improved performance in a popular RAG case.
Abstract:Text-to-Image Diffusion Models (T2I DMs) have garnered significant attention for their ability to generate high-quality images from textual descriptions. However, these models often produce images that do not fully align with the input prompts, resulting in semantic inconsistencies. The most prominent issue among these semantic inconsistencies is catastrophic-neglect, where the images generated by T2I DMs miss key objects mentioned in the prompt. We first conduct an empirical study on this issue, exploring the prevalence of catastrophic-neglect, potential mitigation strategies with feature enhancement, and the insights gained. Guided by the empirical findings, we propose an automated repair approach named Patcher to address catastrophic-neglect in T2I DMs. Specifically, Patcher first determines whether there are any neglected objects in the prompt, and then applies attention-guided feature enhancement to these neglected objects, resulting in a repaired prompt. Experimental results on three versions of Stable Diffusion demonstrate that Patcher effectively repairs the issue of catastrophic-neglect, achieving 10.1%-16.3% higher Correct Rate in image generation compared to baselines.
Abstract:Visual entailment (VE) is a multimodal reasoning task consisting of image-sentence pairs whereby a promise is defined by an image, and a hypothesis is described by a sentence. The goal is to predict whether the image semantically entails the sentence. VE systems have been widely adopted in many downstream tasks. Metamorphic testing is the commonest technique for AI algorithms, but it poses a significant challenge for VE testing. They either only consider perturbations on single modality which would result in ineffective tests due to the destruction of the relationship of image-text pair, or just conduct shallow perturbations on the inputs which can hardly detect the decision error made by VE systems. Motivated by the fact that objects in the image are the fundamental element for reasoning, we propose VEglue, an object-aligned joint erasing approach for VE systems testing. It first aligns the object regions in the premise and object descriptions in the hypothesis to identify linked and un-linked objects. Then, based on the alignment information, three Metamorphic Relations are designed to jointly erase the objects of the two modalities. We evaluate VEglue on four widely-used VE systems involving two public datasets. Results show that VEglue could detect 11,609 issues on average, which is 194%-2,846% more than the baselines. In addition, VEglue could reach 52.5% Issue Finding Rate (IFR) on average, and significantly outperform the baselines by 17.1%-38.2%. Furthermore, we leverage the tests generated by VEglue to retrain the VE systems, which largely improves model performance (50.8% increase in accuracy) on newly generated tests without sacrificing the accuracy on the original test set.
Abstract:Due to the advantages of fusing information from various modalities, multimodal learning is gaining increasing attention. Being a fundamental task of multimodal learning, Visual Grounding (VG), aims to locate objects in images through natural language expressions. Ensuring the quality of VG models presents significant challenges due to the complex nature of the task. In the black box scenario, existing adversarial testing techniques often fail to fully exploit the potential of both modalities of information. They typically apply perturbations based solely on either the image or text information, disregarding the crucial correlation between the two modalities, which would lead to failures in test oracles or an inability to effectively challenge VG models. To this end, we propose PEELING, a text perturbation approach via image-aware property reduction for adversarial testing of the VG model. The core idea is to reduce the property-related information in the original expression meanwhile ensuring the reduced expression can still uniquely describe the original object in the image. To achieve this, PEELING first conducts the object and properties extraction and recombination to generate candidate property reduction expressions. It then selects the satisfied expressions that accurately describe the original object while ensuring no other objects in the image fulfill the expression, through querying the image with a visual understanding technique. We evaluate PEELING on the state-of-the-art VG model, i.e. OFA-VG, involving three commonly used datasets. Results show that the adversarial tests generated by PEELING achieves 21.4% in MultiModal Impact score (MMI), and outperforms state-of-the-art baselines for images and texts by 8.2%--15.1%.
Abstract:With the development of LLMs, the security threats of LLMs are getting more and more attention. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks primarily utilize scenario camouflage techniques. However their explicitly mention of malicious intent will be easily recognized and defended by LLMs. In this paper, we propose an indirect jailbreak attack approach, Puzzler, which can bypass the LLM's defense strategy and obtain malicious response by implicitly providing LLMs with some clues about the original malicious query. In addition, inspired by the wisdom of "When unable to attack, defend" from Sun Tzu's Art of War, we adopt a defensive stance to gather clues about the original malicious query through LLMs. Extensive experimental results show that Puzzler achieves a query success rate of 96.6% on closed-source LLMs, which is 57.9%-82.7% higher than baselines. Furthermore, when tested against the state-of-the-art jailbreak detection approaches, Puzzler proves to be more effective at evading detection compared to baselines.