Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:Low-resource languages (LRLs) face challenges in supervised neural machine translation due to limited parallel data, prompting research into unsupervised methods. Unsupervised neural machine translation (UNMT) methods, including back-translation, transfer learning, and pivot-based translation, offer practical solutions for LRL translation, but they are hindered by issues like synthetic data noise, language bias, and error propagation, which can potentially be mitigated by Large Language Models (LLMs). LLMs have advanced NMT with in-context learning (ICL) and supervised fine-tuning methods, but insufficient training data results in poor performance in LRLs. We argue that LLMs can mitigate the linguistic noise with auxiliary languages to improve translations in LRLs. In this paper, we propose Probability-driven Meta-graph Prompter (POMP), a novel approach employing a dynamic, sampling-based graph of multiple auxiliary languages to enhance LLMs' translation capabilities for LRLs. POMP involves constructing a directed acyclic meta-graph for each source language, from which we dynamically sample multiple paths to prompt LLMs to mitigate the linguistic noise and improve translations during training. We use the BLEURT metric to evaluate the translations and back-propagate rewards, estimated by scores, to update the probabilities of auxiliary languages in the paths. Our experiments show significant improvements in the translation quality of three LRLs, demonstrating the effectiveness of our approach.
Abstract:This paper presents a novel microwave photonic (MWP) radar scheme that is capable of optically generating and processing broadband linear frequency-modulated (LFM) microwave signals without using any radio-frequency (RF) sources. In the transmitter, a broadband LFM microwave signal is generated by controlling the period-one (P1) oscillation of an optically injected semiconductor laser. After targets reflection, photonic de-chirping is implemented based on a dual-drive Mach-Zehnder modulator (DMZM), which is followed by a low-speed analog-to-digital converter (ADC) and digital signal processer (DSP) to reconstruct target information. Without the limitations of external RF sources, the proposed radar has an ultra-flexible tunability, and the main operating parameters are adjustable, including central frequency, bandwidth, frequency band, and temporal period. In the experiment, a fully photonics-based Ku-band radar with a bandwidth of 4 GHz is established for high-resolution detection and inverse synthetic aperture radar (ISAR) imaging. Results show that a high range resolution reaching ~1.88 cm, and a two-dimensional (2D) imaging resolution as high as ~1.88 cm x ~2.00 cm are achieved with a sampling rate of 100 MSa/s in the receiver. The flexible tunability of the radar is also experimentally investigated. The proposed radar scheme features low cost, simple structure, and high reconfigurability, which, hopefully, is to be used in future multifunction adaptive and miniaturized radars.