Abstract:As short-form video-sharing platforms become a significant channel for news consumption, fake news in short videos has emerged as a serious threat in the online information ecosystem, making developing detection methods for this new scenario an urgent need. Compared with that in text and image formats, fake news on short video platforms contains rich but heterogeneous information in various modalities, posing a challenge to effective feature utilization. Unlike existing works mostly focusing on analyzing what is presented, we introduce a novel perspective that considers how it might be created. Through the lens of the creative process behind news video production, our empirical analysis uncovers the unique characteristics of fake news videos in material selection and editing. Based on the obtained insights, we design FakingRecipe, a creative process-aware model for detecting fake news short videos. It captures the fake news preferences in material selection from sentimental and semantic aspects and considers the traits of material editing from spatial and temporal aspects. To improve evaluation comprehensiveness, we first construct FakeTT, an English dataset for this task, and conduct experiments on both FakeTT and the existing Chinese FakeSV dataset. The results show FakingRecipe's superiority in detecting fake news on short video platforms.
Abstract:With information consumption via online video streaming becoming increasingly popular, misinformation video poses a new threat to the health of the online information ecosystem. Though previous studies have made much progress in detecting misinformation in text and image formats, video-based misinformation brings new and unique challenges to automatic detection systems: 1) high information heterogeneity brought by various modalities, 2) blurred distinction between misleading video manipulation and ubiquitous artistic video editing, and 3) new patterns of misinformation propagation due to the dominant role of recommendation systems on online video platforms. To facilitate research on this challenging task, we conduct this survey to present advances in misinformation video detection research. We first analyze and characterize the misinformation video from three levels including signals, semantics, and intents. Based on the characterization, we systematically review existing works for detection from features of various modalities to techniques for clue integration. We also introduce existing resources including representative datasets and widely used tools. Besides summarizing existing studies, we discuss related areas and outline open issues and future directions to encourage and guide more research on misinformation video detection. Our corresponding public repository is available at https://github.com/ICTMCG/Awesome-Misinfo-Video-Detection.