NetEase Fuxi AI Lab
Abstract:Generating landscape paintings expands the possibilities of artistic creativity and imagination. Traditional landscape painting methods involve using ink or colored ink on rice paper, which requires substantial time and effort. These methods are susceptible to errors and inconsistencies and lack precise control over lines and colors. This paper presents LPGen, a high-fidelity, controllable model for landscape painting generation, introducing a novel multi-modal framework that integrates image prompts into the diffusion model. We extract its edges and contours by computing canny edges from the target landscape image. These, along with natural language text prompts and drawing style references, are fed into the latent diffusion model as conditions. We implement a decoupled cross-attention strategy to ensure compatibility between image and text prompts, facilitating multi-modal image generation. A decoder generates the final image. Quantitative and qualitative analyses demonstrate that our method outperforms existing approaches in landscape painting generation and exceeds the current state-of-the-art. The LPGen network effectively controls the composition and color of landscape paintings, generates more accurate images, and supports further research in deep learning-based landscape painting generation.
Abstract:We present OAKINK2, a dataset of bimanual object manipulation tasks for complex daily activities. In pursuit of constructing the complex tasks into a structured representation, OAKINK2 introduces three level of abstraction to organize the manipulation tasks: Affordance, Primitive Task, and Complex Task. OAKINK2 features on an object-centric perspective for decoding the complex tasks, treating them as a sequence of object affordance fulfillment. The first level, Affordance, outlines the functionalities that objects in the scene can afford, the second level, Primitive Task, describes the minimal interaction units that humans interact with the object to achieve its affordance, and the third level, Complex Task, illustrates how Primitive Tasks are composed and interdependent. OAKINK2 dataset provides multi-view image streams and precise pose annotations for the human body, hands and various interacting objects. This extensive collection supports applications such as interaction reconstruction and motion synthesis. Based on the 3-level abstraction of OAKINK2, we explore a task-oriented framework for Complex Task Completion (CTC). CTC aims to generate a sequence of bimanual manipulation to achieve task objectives. Within the CTC framework, we employ Large Language Models (LLMs) to decompose the complex task objectives into sequences of Primitive Tasks and have developed a Motion Fulfillment Model that generates bimanual hand motion for each Primitive Task. OAKINK2 datasets and models are available at https://oakink.net/v2.
Abstract:This paper surveys different publicly available neural network models used for detecting wildfires using regular visible-range cameras which are placed on hilltops or forest lookout towers. The neural network models are pre-trained on ImageNet-1K and fine-tuned on a custom wildfire dataset. The performance of these models is evaluated on a diverse set of wildfire images, and the survey provides useful information for those interested in using transfer learning for wildfire detection. Swin Transformer-tiny has the highest AUC value but ConvNext-tiny detects all the wildfire events and has the lowest false alarm rate in our dataset.
Abstract:As a measure of the long-term contribution produced by customers in a service or product relationship, life-time value, or LTV, can more comprehensively find the optimal strategy for service delivery. However, it is challenging to accurately abstract the LTV scene, model it reasonably, and find the optimal solution. The current theories either cannot precisely express LTV because of the single modeling structure, or there is no efficient solution. We propose a general LTV modeling method, which solves the problem that customers' long-term contribution is difficult to quantify while existing methods, such as modeling the click-through rate, only pursue the short-term contribution. At the same time, we also propose a fast dynamic programming solution based on a mutated bisection method and the memoryless repeated experiments assumption. The model and method can be applied to different service scenarios, such as the recommendation system. Experiments on real-world datasets confirm the effectiveness of the proposed model and optimization method. In addition, this whole LTV structure was deployed at a large E-commerce mobile phone application, where it managed to select optimal push message sending time and achieved a 10\% LTV improvement.
Abstract:Wide field small aperture telescopes (WFSATs) are commonly used for fast sky survey. Telescope arrays composed by several WFSATs are capable to scan sky several times per night. Huge amount of data would be obtained by them and these data need to be processed immediately. In this paper, we propose ARGUS (Astronomical taRGets detection framework for Unified telescopes) for real-time transit detection. The ARGUS uses a deep learning based astronomical detection algorithm implemented in embedded devices in each WFSATs to detect astronomical targets. The position and probability of a detection being an astronomical targets will be sent to a trained ensemble learning algorithm to output information of celestial sources. After matching these sources with star catalog, ARGUS will directly output type and positions of transient candidates. We use simulated data to test the performance of ARGUS and find that ARGUS can increase the performance of WFSATs in transient detection tasks robustly.
Abstract:Music-to-dance translation is a brand-new and powerful feature in recent role-playing games. Players can now let their characters dance along with specified music clips and even generate fan-made dance videos. Previous works of this topic consider music-to-dance as a supervised motion generation problem based on time-series data. However, these methods suffer from limited training data pairs and the degradation of movements. This paper provides a new perspective for this task where we re-formulate the translation problem as a piece-wise dance phrase retrieval problem based on the choreography theory. With such a design, players are allowed to further edit the dance movements on top of our generation while other regression based methods ignore such user interactivity. Considering that the dance motion capture is an expensive and time-consuming procedure which requires the assistance of professional dancers, we train our method under a semi-supervised learning framework with a large unlabeled dataset (20x than labeled data) collected. A co-ascent mechanism is introduced to improve the robustness of our network. Using this unlabeled dataset, we also introduce self-supervised pre-training so that the translator can understand the melody, rhythm, and other components of music phrases. We show that the pre-training significantly improves the translation accuracy than that of training from scratch. Experimental results suggest that our method not only generalizes well over various styles of music but also succeeds in expert-level choreography for game players.
Abstract:To maximize cumulative user engagement (e.g. cumulative clicks) in sequential recommendation, it is often needed to tradeoff two potentially conflicting objectives, that is, pursuing higher immediate user engagement (e.g., click-through rate) and encouraging user browsing (i.e., more items exposured). Existing works often study these two tasks separately, thus tend to result in sub-optimal results. In this paper, we study this problem from an online optimization perspective, and propose a flexible and practical framework to explicitly tradeoff longer user browsing length and high immediate user engagement. Specifically, by considering items as actions, user's requests as states and user leaving as an absorbing state, we formulate each user's behavior as a personalized Markov decision process (MDP), and the problem of maximizing cumulative user engagement is reduced to a stochastic shortest path (SSP) problem. Meanwhile, with immediate user engagement and quit probability estimation, it is shown that the SSP problem can be efficiently solved via dynamic programming. Experiments on real-world datasets demonstrate the effectiveness of the proposed approach. Moreover, this approach is deployed at a large E-commerce platform, achieved over 7% improvement of cumulative clicks.
Abstract:Wide field small aperture telescopes are working horses for fast sky surveying. Transient discovery is one of their main tasks. Classification of candidate transient images between real sources and artifacts with high accuracy is an important step for transient discovery. In this paper, we propose two transient classification methods based on neural networks. The first method uses the convolutional neural network without pooling layers to classify transient images with low sampling rate. The second method assumes transient images as one dimensional signals and is based on recurrent neural networks with long short term memory and leaky ReLu activation function in each detection layer. Testing with real observation data, we find that although these two methods can both achieve more than 94% classification accuracy, they have different classification properties for different targets. Based on this result, we propose to use the ensemble learning method to further increase the classification accuracy to more than 97%.