Abstract:The expansion of streaming media and e-commerce has led to a boom in recommendation systems, including Sequential recommendation systems, which consider the user's previous interactions with items. In recent years, research has focused on architectural improvements such as transformer blocks and feature extraction that can augment model information. Among these features are context and attributes. Of particular importance is the temporal footprint, which is often considered part of the context and seen in previous publications as interchangeable with positional information. Other publications use positional encodings with little attention to them. In this paper, we analyse positional encodings, showing that they provide relative information between items that are not inferable from the temporal footprint. Furthermore, we evaluate different encodings and how they affect metrics and stability using Amazon datasets. We added some new encodings to help with these problems along the way. We found that we can reach new state-of-the-art results by finding the correct positional encoding, but more importantly, certain encodings stabilise the training.
Abstract:Composing poetry or lyrics involves several creative factors, but a challenging aspect of generation is the adherence to a more or less strict metric and rhyming pattern. To address this challenge specifically, previous work on the task has mainly focused on reverse language modeling, which brings the critical selection of each rhyming word to the forefront of each verse. On the other hand, reversing the word order requires that models be trained from scratch with this task-specific goal and cannot take advantage of transfer learning from a Pretrained Language Model (PLM). We propose a novel fine-tuning approach that prepends the rhyming word at the start of each lyric, which allows the critical rhyming decision to be made before the model commits to the content of the lyric (as during reverse language modeling), but maintains compatibility with the word order of regular PLMs as the lyric itself is still generated in left-to-right order. We conducted extensive experiments to compare this fine-tuning against the current state-of-the-art strategies for rhyming, finding that our approach generates more readable text and better rhyming capabilities. Furthermore, we furnish a high-quality dataset in English and 12 other languages, analyse the approach's feasibility in a multilingual context, provide extensive experimental results shedding light on good and bad practices for lyrics generation, and propose metrics to compare methods in the future.
Abstract:Recent advancements in Large Language Models (LLMs) have enhanced the efficacy of agent communication and social interactions. Despite these advancements, building LLM-based agents for reasoning in dynamic environments involving competition and collaboration remains challenging due to the limitations of informed graph-based search methods. We propose PLAYER*, a novel framework based on an anytime sampling-based planner, which utilises sensors and pruners to enable a purely question-driven searching framework for complex reasoning tasks. We also introduce a quantifiable evaluation method using multiple-choice questions and construct the WellPlay dataset with 1,482 QA pairs. Experiments demonstrate PLAYER*'s efficiency and performance enhancements compared to existing methods in complex, dynamic environments with quantifiable results.
Abstract:Neural Theory-of-Mind (N-ToM), machine's ability to understand and keep track of the mental states of others, is pivotal in developing socially intelligent agents. However, prevalent N-ToM benchmarks have several shortcomings, including the presence of ambiguous and artificial narratives, absence of personality traits and preferences, a lack of questions addressing characters' psychological mental states, and limited diversity in the questions posed. In response to these issues, we construct OpenToM, a new benchmark for assessing N-ToM with (1) longer and clearer narrative stories, (2) characters with explicit personality traits, (3) actions that are triggered by character intentions, and (4) questions designed to challenge LLMs' capabilities of modeling characters' mental states of both the physical and psychological world. Using OpenToM, we reveal that state-of-the-art LLMs thrive at modeling certain aspects of mental states in the physical world but fall short when tracking characters' mental states in the psychological world.
Abstract:Graph Neural Networks (GNNs) have achieved great success in Knowledge Graph Completion (KGC) by modelling how entities and relations interact in recent years. However, the explanation of the predicted facts has not caught the necessary attention. Proper explanations for the results of GNN-based KGC models increase model transparency and help researchers develop more reliable models. Existing practices for explaining KGC tasks rely on instance/subgraph-based approaches, while in some scenarios, paths can provide more user-friendly and interpretable explanations. Nonetheless, the methods for generating path-based explanations for KGs have not been well-explored. To address this gap, we propose Power-Link, the first path-based KGC explainer that explores GNN-based models. We design a novel simplified graph-powering technique, which enables the generation of path-based explanations with a fully parallelisable and memory-efficient training scheme. We further introduce three new metrics for quantitative evaluation of the explanations, together with a qualitative human evaluation. Extensive experiments demonstrate that Power-Link outperforms the SOTA baselines in interpretability, efficiency, and scalability.
Abstract:Attention mechanisms are often used in deep neural networks for distantly supervised relation extraction (DS-RE) to distinguish valid from noisy instances. However, traditional 1-D vector attention models are insufficient for the learning of different contexts in the selection of valid instances to predict the relationship for an entity pair. To alleviate this issue, we propose a novel multi-level structured (2-D matrix) self-attention mechanism for DS-RE in a multi-instance learning (MIL) framework using bidirectional recurrent neural networks. In the proposed method, a structured word-level self-attention mechanism learns a 2-D matrix where each row vector represents a weight distribution for different aspects of an instance regarding two entities. Targeting the MIL issue, the structured sentence-level attention learns a 2-D matrix where each row vector represents a weight distribution on selection of different valid in-stances. Experiments conducted on two publicly available DS-RE datasets show that the proposed framework with a multi-level structured self-attention mechanism significantly outperform state-of-the-art baselines in terms of PR curves, P@N and F1 measures.