Abstract:For distributed computing with Byzantine machines under Privacy Protection (PP) constraints, this paper develops a robust PP distributed quasi-Newton estimation, which only requires the node machines to transmit five vectors to the central processor with high asymptotic relative efficiency. Compared with the gradient descent strategy which requires more rounds of transmission and the Newton iteration strategy which requires the entire Hessian matrix to be transmitted, the novel quasi-Newton iteration has advantages in reducing privacy budgeting and transmission cost. Moreover, our PP algorithm does not depend on the boundedness of gradients and second-order derivatives. When gradients and second-order derivatives follow sub-exponential distributions, we offer a mechanism that can ensure PP with a sufficiently high probability. Furthermore, this novel estimator can achieve the optimal convergence rate and the asymptotic normality. The numerical studies on synthetic and real data sets evaluate the performance of the proposed algorithm.
Abstract:Radiology report generation (RRG) methods often lack sufficient medical knowledge to produce clinically accurate reports. The scene graph contains rich information to describe the objects in an image. We explore enriching the medical knowledge for RRG via a scene graph, which has not been done in the current RRG literature. To this end, we propose the Scene Graph aided RRG (SGRRG) network, a framework that generates region-level visual features, predicts anatomical attributes, and leverages an automatically generated scene graph, thus achieving medical knowledge distillation in an end-to-end manner. SGRRG is composed of a dedicated scene graph encoder responsible for translating the scene graph, and a scene graph-aided decoder that takes advantage of both patch-level and region-level visual information. A fine-grained, sentence-level attention method is designed to better dis-till the scene graph information. Extensive experiments demonstrate that SGRRG outperforms previous state-of-the-art methods in report generation and can better capture abnormal findings.
Abstract:Neural Theory-of-Mind (N-ToM), machine's ability to understand and keep track of the mental states of others, is pivotal in developing socially intelligent agents. However, prevalent N-ToM benchmarks have several shortcomings, including the presence of ambiguous and artificial narratives, absence of personality traits and preferences, a lack of questions addressing characters' psychological mental states, and limited diversity in the questions posed. In response to these issues, we construct OpenToM, a new benchmark for assessing N-ToM with (1) longer and clearer narrative stories, (2) characters with explicit personality traits, (3) actions that are triggered by character intentions, and (4) questions designed to challenge LLMs' capabilities of modeling characters' mental states of both the physical and psychological world. Using OpenToM, we reveal that state-of-the-art LLMs thrive at modeling certain aspects of mental states in the physical world but fall short when tracking characters' mental states in the psychological world.
Abstract:Narrative understanding involves capturing the author's cognitive processes, providing insights into their knowledge, intentions, beliefs, and desires. Although large language models (LLMs) excel in generating grammatically coherent text, their ability to comprehend the author's thoughts remains uncertain. This limitation hinders the practical applications of narrative understanding. In this paper, we conduct a comprehensive survey of narrative understanding tasks, thoroughly examining their key features, definitions, taxonomy, associated datasets, training objectives, evaluation metrics, and limitations. Furthermore, we explore the potential of expanding the capabilities of modularized LLMs to address novel narrative understanding tasks. By framing narrative understanding as the retrieval of the author's imaginative cues that outline the narrative structure, our study introduces a fresh perspective on enhancing narrative comprehension.
Abstract:In this paper, we introduce NarrativePlay, a novel system that allows users to role-play a fictional character and interact with other characters in narratives such as novels in an immersive environment. We leverage Large Language Models (LLMs) to generate human-like responses, guided by personality traits extracted from narratives. The system incorporates auto-generated visual display of narrative settings, character portraits, and character speech, greatly enhancing user experience. Our approach eschews predefined sandboxes, focusing instead on main storyline events extracted from narratives from the perspective of a user-selected character. NarrativePlay has been evaluated on two types of narratives, detective and adventure stories, where users can either explore the world or improve their favorability with the narrative characters through conversations.
Abstract:Radiology report generation aims to automatically provide clinically meaningful descriptions of radiology images such as MRI and X-ray. Although great success has been achieved in natural scene image captioning tasks, radiology report generation remains challenging and requires prior medical knowledge. In this paper, we propose PromptRRG, a method that utilizes prompt learning to activate a pretrained model and incorporate prior knowledge. Since prompt learning for radiology report generation has not been explored before, we begin with investigating prompt designs and categorise them based on varying levels of knowledge: common, domain-specific and disease-enriched prompts. Additionally, we propose an automatic prompt learning mechanism to alleviate the burden of manual prompt engineering. This is the first work to systematically examine the effectiveness of prompt learning for radiology report generation. Experimental results on the largest radiology report generation benchmark, MIMIC-CXR, demonstrate that our proposed method achieves state-of-the-art performance. Code will be available upon the acceptance.
Abstract:In this demo, we introduce a web-based misinformation detection system PANACEA on COVID-19 related claims, which has two modules, fact-checking and rumour detection. Our fact-checking module, which is supported by novel natural language inference methods with a self-attention network, outperforms state-of-the-art approaches. It is also able to give automated veracity assessment and ranked supporting evidence with the stance towards the claim to be checked. In addition, PANACEA adapts the bi-directional graph convolutional networks model, which is able to detect rumours based on comment networks of related tweets, instead of relying on the knowledge base. This rumour detection module assists by warning the users in the early stages when a knowledge base may not be available.
Abstract:Building models to detect vaccine attitudes on social media is challenging because of the composite, often intricate aspects involved, and the limited availability of annotated data. Existing approaches have relied heavily on supervised training that requires abundant annotations and pre-defined aspect categories. Instead, with the aim of leveraging the large amount of unannotated data now available on vaccination, we propose a novel semi-supervised approach for vaccine attitude detection, called VADet. A variational autoencoding architecture based on language models is employed to learn from unlabelled data the topical information of the domain. Then, the model is fine-tuned with a few manually annotated examples of user attitudes. We validate the effectiveness of VADet on our annotated data and also on an existing vaccination corpus annotated with opinions on vaccines. Our results show that VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.
Abstract:In this paper, we establish minimax optimal rates of convergence for prediction in a semi-functional linear model that consists of a functional component and a less smooth nonparametric component. Our results reveal that the smoother functional component can be learned with the minimax rate as if the nonparametric component were known. More specifically, a double-penalized least squares method is adopted to estimate both the functional and nonparametric components within the framework of reproducing kernel Hilbert spaces. By virtue of the representer theorem, an efficient algorithm that requires no iterations is proposed to solve the corresponding optimization problem, where the regularization parameters are selected by the generalized cross validation criterion. Numerical studies are provided to demonstrate the effectiveness of the method and to verify the theoretical analysis.
Abstract:Emotion detection in dialogues is challenging as it often requires the identification of thematic topics underlying a conversation, the relevant commonsense knowledge, and the intricate transition patterns between the affective states. In this paper, we propose a Topic-Driven Knowledge-Aware Transformer to handle the challenges above. We firstly design a topic-augmented language model (LM) with an additional layer specialized for topic detection. The topic-augmented LM is then combined with commonsense statements derived from a knowledge base based on the dialogue contextual information. Finally, a transformer-based encoder-decoder architecture fuses the topical and commonsense information, and performs the emotion label sequence prediction. The model has been experimented on four datasets in dialogue emotion detection, demonstrating its superiority empirically over the existing state-of-the-art approaches. Quantitative and qualitative results show that the model can discover topics which help in distinguishing emotion categories.