Abstract:Selecting check-worthy claims for fact-checking is considered a crucial part of expediting the fact-checking process by filtering out and ranking the check-worthy claims for being validated among the impressive amount of claims could be found online. The check-worthy claim detection task, however, becomes more challenging when the model needs to deal with new topics that differ from those seen earlier. In this study, we propose a domain-adaptation framework for check-worthy claims detection across topics for the Arabic language to adopt a new topic, mimicking a real-life scenario of the daily emergence of events worldwide. We propose the Gradual Topic Learning (GTL) model, which builds an ability to learning gradually and emphasizes the check-worthy claims for the target topic during several stages of the learning process. In addition, we introduce the Similarity-driven Gradual Topic Learning (SGTL) model that synthesizes gradual learning with a similarity-based strategy for the target topic. Our experiments demonstrate the effectiveness of our proposed model, showing an overall tendency for improving performance over the state-of-the-art baseline across 11 out of the 14 topics under study.
Abstract:Natural Language Generation has been rapidly developing with the advent of large language models (LLMs). While their usage has sparked significant attention from the general public, it is important for readers to be aware when a piece of text is LLM-generated. This has brought about the need for building models that enable automated LLM-generated text detection, with the aim of mitigating potential negative outcomes of such content. Existing LLM-generated detectors show competitive performances in telling apart LLM-generated and human-written text, but this performance is likely to deteriorate when paraphrased texts are considered. In this study, we devise a new data collection strategy to collect Human & LLM Paraphrase Collection (HLPC), a first-of-its-kind dataset that incorporates human-written texts and paraphrases, as well as LLM-generated texts and paraphrases. With the aim of understanding the effects of human-written paraphrases on the performance of state-of-the-art LLM-generated text detectors OpenAI RoBERTa and watermark detectors, we perform classification experiments that incorporate human-written paraphrases, watermarked and non-watermarked LLM-generated documents from GPT and OPT, and LLM-generated paraphrases from DIPPER and BART. The results show that the inclusion of human-written paraphrases has a significant impact of LLM-generated detector performance, promoting TPR@1%FPR with a possible trade-off of AUROC and accuracy.
Abstract:The rapid dissemination of information through social media and the Internet has posed a significant challenge for fact-checking, among others in identifying check-worthy claims that fact-checkers should pay attention to, i.e. filtering claims needing fact-checking from a large pool of sentences. This challenge has stressed the need to focus on determining the priority of claims, specifically which claims are worth to be fact-checked. Despite advancements in this area in recent years, the application of large language models (LLMs), such as GPT, has only recently drawn attention in studies. However, many open-source LLMs remain underexplored. Therefore, this study investigates the application of eight prominent open-source LLMs with fine-tuning and prompt engineering to identify check-worthy statements from political transcriptions. Further, we propose a two-step data pruning approach to automatically identify high-quality training data instances for effective learning. The efficiency of our approach is demonstrated through evaluations on the English language dataset as part of the check-worthiness estimation task of CheckThat! 2024. Further, the experiments conducted with data pruning demonstrate that competitive performance can be achieved with only about 44\% of the training data. Our team ranked first in the check-worthiness estimation task in the English language.
Abstract:Stance detection has been widely studied as the task of determining if a social media post is positive, negative or neutral towards a specific issue, such as support towards vaccines. Research in stance detection has however often been limited to a single language and, where more than one language has been studied, research has focused on few-shot settings, overlooking the challenges of developing a zero-shot cross-lingual stance detection model. This paper makes the first such effort by introducing a novel approach to zero-shot cross-lingual stance detection, Multilingual Translation-Augmented BERT (MTAB), aiming to enhance the performance of a cross-lingual classifier in the absence of explicit training data for target languages. Our technique employs translation augmentation to improve zero-shot performance and pairs it with adversarial learning to further boost model efficacy. Through experiments on datasets labeled for stance towards vaccines in four languages English, German, French, Italian. We demonstrate the effectiveness of our proposed approach, showcasing improved results in comparison to a strong baseline model as well as ablated versions of our model. Our experiments demonstrate the effectiveness of model components, not least the translation-augmented data as well as the adversarial learning component, to the improved performance of the model. We have made our source code accessible on GitHub.
Abstract:Stance detection, as the task of determining the viewpoint of a social media post towards a target as 'favor' or 'against', has been understudied in the challenging yet realistic scenario where there is limited labeled data for a certain target. Our work advances research in few-shot stance detection by introducing SocialPET, a socially informed approach to leveraging language models for the task. Our proposed approach builds on the Pattern Exploiting Training (PET) technique, which addresses classification tasks as cloze questions through the use of language models. To enhance the approach with social awareness, we exploit the social network structure surrounding social media posts. We prove the effectiveness of SocialPET on two stance datasets, Multi-target and P-Stance, outperforming competitive stance detection models as well as the base model, PET, where the labeled instances for the target under study is as few as 100. When we delve into the results, we observe that SocialPET is comparatively strong in identifying instances of the `against' class, where baseline models underperform.
Abstract:Swear words are a common proxy to collect datasets with cyberbullying incidents. Our focus is on measuring and mitigating biases derived from spurious associations between swear words and incidents occurring as a result of such data collection strategies. After demonstrating and quantifying these biases, we introduce ID-XCB, the first data-independent debiasing technique that combines adversarial training, bias constraints and debias fine-tuning approach aimed at alleviating model attention to bias-inducing words without impacting overall model performance. We explore ID-XCB on two popular session-based cyberbullying datasets along with comprehensive ablation and generalisation studies. We show that ID-XCB learns robust cyberbullying detection capabilities while mitigating biases, outperforming state-of-the-art debiasing methods in both performance and bias mitigation. Our quantitative and qualitative analyses demonstrate its generalisability to unseen data.
Abstract:Claim verification is an essential step in the automated fact-checking pipeline which assesses the veracity of a claim against a piece of evidence. In this work, we explore the potential of few-shot claim verification, where only very limited data is available for supervision. We propose MAPLE (Micro Analysis of Pairwise Language Evolution), a pioneering approach that explores the alignment between a claim and its evidence with a small seq2seq model and a novel semantic measure. Its innovative utilization of micro language evolution path leverages unlabelled pairwise data to facilitate claim verification while imposing low demand on data annotations and computing resources. MAPLE demonstrates significant performance improvements over SOTA baselines SEED, PET and LLaMA 2 across three fact-checking datasets: FEVER, Climate FEVER, and SciFact. Data and code are available here: https://github.com/XiaZeng0223/MAPLE
Abstract:Automated fact-checking has drawn considerable attention over the past few decades due to the increase in the diffusion of misinformation on online platforms. This is often carried out as a sequence of tasks comprising (i) the detection of sentences circulating in online platforms which constitute claims needing verification, followed by (ii) the verification process of those claims. This survey focuses on the former, by discussing existing efforts towards detecting claims needing fact-checking, with a particular focus on multilingual data and methods. This is a challenging and fertile direction where existing methods are yet far from matching human performance due to the profoundly challenging nature of the issue. Especially, the dissemination of information across multiple social platforms, articulated in multiple languages and modalities demands more generalized solutions for combating misinformation. Focusing on multilingual misinformation, we present a comprehensive survey of existing multilingual claim detection research. We present state-of-the-art multilingual claim detection research categorized into three key factors of the problem, verifiability, priority, and similarity. Further, we present a detailed overview of the existing multilingual datasets along with the challenges and suggest possible future advancements.
Abstract:The advancement of machine learning and symbolic approaches have underscored their strengths and weaknesses in Natural Language Processing (NLP). While machine learning approaches are powerful in identifying patterns in data, they often fall short in learning commonsense and the factual knowledge required for the NLP tasks. Meanwhile, the symbolic methods excel in representing knowledge-rich data. However, they struggle to adapt dynamic data and generalize the knowledge. Bridging these two paradigms through hybrid approaches enables the alleviation of weaknesses in both while preserving their strengths. Recent studies extol the virtues of this union, showcasing promising results in a wide range of NLP tasks. In this paper, we present an overview of hybrid approaches used for NLP. Specifically, we delve into the state-of-the-art hybrid approaches used for a broad spectrum of NLP tasks requiring natural language understanding, generation, and reasoning. Furthermore, we discuss the existing resources available for hybrid approaches for NLP along with the challenges, offering a roadmap for future directions.
Abstract:The growing prevalence and rapid evolution of offensive language in social media amplify the complexities of detection, particularly highlighting the challenges in identifying such content across diverse languages. This survey presents a systematic and comprehensive exploration of Cross-Lingual Transfer Learning (CLTL) techniques in offensive language detection in social media. Our study stands as the first holistic overview to focus exclusively on the cross-lingual scenario in this domain. We analyse 67 relevant papers and categorise these studies across various dimensions, including the characteristics of multilingual datasets used, the cross-lingual resources employed, and the specific CLTL strategies implemented. According to "what to transfer", we also summarise three main CLTL transfer approaches: instance, feature, and parameter transfer. Additionally, we shed light on the current challenges and future research opportunities in this field. Furthermore, we have made our survey resources available online, including two comprehensive tables that provide accessible references to the multilingual datasets and CLTL methods used in the reviewed literature.