Abstract:As academic literature proliferates, traditional review methods are increasingly challenged by the sheer volume and diversity of available research. This article presents a study that aims to address these challenges by enhancing the efficiency and scope of systematic reviews in the social sciences through advanced machine learning (ML) and natural language processing (NLP) tools. In particular, we focus on automating stages within the systematic reviewing process that are time-intensive and repetitive for human annotators and which lend themselves to immediate scalability through tools such as information retrieval and summarisation guided by expert advice. The article concludes with a summary of lessons learnt regarding the integrated approach towards systematic reviews and future directions for improvement, including explainability.
Abstract:Wildfires pose a significantly increasing hazard to global ecosystems due to the climate crisis. Due to its complex nature, there is an urgent need for innovative approaches to wildfire prediction, such as machine learning. This research took a unique approach, differentiating from classical supervised learning, and addressed the gap in unsupervised wildfire prediction using autoencoders and clustering techniques for anomaly detection. Historical weather and normalised difference vegetation index datasets of Australia for 2005 - 2021 were utilised. Two main unsupervised approaches were analysed. The first used a deep autoencoder to obtain latent features, which were then fed into clustering models, isolation forest, local outlier factor and one-class SVM for anomaly detection. The second approach used a deep autoencoder to reconstruct the input data and use reconstruction errors to identify anomalies. Long Short-Term Memory (LSTM) autoencoders and fully connected (FC) autoencoders were employed in this part, both in an unsupervised way learning only from nominal data. The FC autoencoder outperformed its counterparts, achieving an accuracy of 0.71, an F1-score of 0.74, and an MCC of 0.42. These findings highlight the practicality of this method, as it effectively predicts wildfires in the absence of ground truth, utilising an unsupervised learning technique.
Abstract:This paper presents a machine learning approach to estimate the inertial parameters of a spacecraft in cases when those change during operations, e.g. multiple deployments of payloads, unfolding of appendages and booms, propellant consumption as well as during in-orbit servicing and active debris removal operations. The machine learning approach uses time series clustering together with an optimised actuation sequence generated by reinforcement learning to facilitate distinguishing among different inertial parameter sets. The performance of the proposed strategy is assessed against the case of a multi-satellite deployment system showing that the algorithm is resilient towards common disturbances in such kinds of operations.
Abstract:In this work we demonstrate the possibility of estimating the wind environment of a UAV without specialised sensors, using only the UAV's trajectory, applying a causal machine learning approach. We implement the causal curiosity method which combines machine learning times series classification and clustering with a causal framework. We analyse three distinct wind environments: constant wind, shear wind, and turbulence, and explore different optimisation strategies for optimal UAV manoeuvres to estimate the wind conditions. The proposed approach can be used to design optimal trajectories in challenging weather conditions, and to avoid specialised sensors that add to the UAV's weight and compromise its functionality.
Abstract:The sheer number of research outputs published every year makes systematic reviewing increasingly time- and resource-intensive. This paper explores the use of machine learning techniques to help navigate the systematic review process. ML has previously been used to reliably 'screen' articles for review - that is, identify relevant articles based on reviewers' inclusion criteria. The application of ML techniques to subsequent stages of a review, however, such as data extraction and evidence mapping, is in its infancy. We therefore set out to develop a series of tools that would assist in the profiling and analysis of 1,952 publications on the theme of 'outcomes-based contracting'. Tools were developed for the following tasks: assign publications into 'policy area' categories; identify and extract key information for evidence mapping, such as organisations, laws, and geographical information; connect the evidence base to an existing dataset on the same topic; and identify subgroups of articles that may share thematic content. An interactive tool using these techniques and a public dataset with their outputs have been released. Our results demonstrate the utility of ML techniques to enhance evidence accessibility and analysis within the systematic review processes. These efforts show promise in potentially yielding substantial efficiencies for future systematic reviewing and for broadening their analytical scope. Our work suggests that there may be implications for the ease with which policymakers and practitioners can access evidence. While ML techniques seem poised to play a significant role in bridging the gap between research and policy by offering innovative ways of gathering, accessing, and analysing data from systematic reviews, we also highlight their current limitations and the need to exercise caution in their application, particularly given the potential for errors and biases.
Abstract:In this demo, we introduce a web-based misinformation detection system PANACEA on COVID-19 related claims, which has two modules, fact-checking and rumour detection. Our fact-checking module, which is supported by novel natural language inference methods with a self-attention network, outperforms state-of-the-art approaches. It is also able to give automated veracity assessment and ranked supporting evidence with the stance towards the claim to be checked. In addition, PANACEA adapts the bi-directional graph convolutional networks model, which is able to detect rumours based on comment networks of related tweets, instead of relying on the knowledge base. This rumour detection module assists by warning the users in the early stages when a knowledge base may not be available.
Abstract:In recent years participatory budgeting (PB) in Scotland has grown from a handful of community-led processes to a movement supported by local and national government. This is epitomized by an agreement between the Scottish Government and the Convention of Scottish Local Authorities (COSLA) that at least 1% of local authority budgets will be subject to PB. This ongoing research paper explores the challenges that emerge from this 'scaling up' or 'mainstreaming' across the 32 local authorities that make up Scotland. The main objective is to evaluate local authority use of the digital platform Consul, which applies Natural Language Processing (NLP) to address these challenges. This project adopts a qualitative longitudinal design with interviews, observations of PB processes, and analysis of the digital platform data. Thematic analysis is employed to capture the major issues and themes which emerge. Longitudinal analysis then explores how these evolve over time. The potential for 32 live study sites provides a unique opportunity to explore discrete political and social contexts which materialize and allow for a deeper dive into the challenges and issues that may exist, something a wider cross-sectional study would miss. Initial results show that issues and challenges which come from scaling up may be tackled using NLP technology which, in a previous controlled use case-based evaluation, has shown to improve the effectiveness of citizen participation.