Abstract:Mixed-precision computing, a widely applied technique in AI, offers a larger trade-off space between accuracy and efficiency. The recent purposed Mixed-Precision Over-the-Air Federated Learning (MP-OTA-FL) enables clients to operate at appropriate precision levels based on their heterogeneous hardware, taking advantages of the larger trade-off space while covering the quantization overheads in the mixed-precision modulation scheme for the OTA aggregation process. A key to further exploring the potential of the MP-OTA-FL framework is the optimization of client precision levels. The choice of precision level hinges on multifaceted factors including hardware capability, potential client contribution, and user satisfaction, among which factors can be difficult to define or quantify. In this paper, we propose a RAG-based User Profiling for precision planning framework that integrates retrieval-augmented LLMs and dynamic client profiling to optimize satisfaction and contributions. This includes a hybrid interface for gathering device/user insights and an RAG database storing historical quantization decisions with feedback. Experiments show that our method boosts satisfaction, energy savings, and global model accuracy in MP-OTA-FL systems.
Abstract:With the advent of 6G, Open Radio Access Network (O-RAN) architectures are evolving to support intelligent, adaptive, and automated network orchestration. This paper proposes a novel Edge AI and Network Service Orchestration framework that leverages Large Language Model (LLM) agents deployed as O-RAN rApps. The proposed LLM-agent-powered system enables interactive and intuitive orchestration by translating the user's use case description into deployable AI services and corresponding network configurations. The LLM agent automates multiple tasks, including AI model selection from repositories (e.g., Hugging Face), service deployment, network adaptation, and real-time monitoring via xApps. We implement a prototype using open-source O-RAN projects (OpenAirInterface and FlexRIC) to demonstrate the feasibility and functionality of our framework. Our demonstration showcases the end-to-end flow of AI service orchestration, from user interaction to network adaptation, ensuring Quality of Service (QoS) compliance. This work highlights the potential of integrating LLM-driven automation into 6G O-RAN ecosystems, paving the way for more accessible and efficient edge AI ecosystems.
Abstract:Modeling the evolution of system with time-series data is a challenging and critical task in a wide range of fields, especially when the time-series data is regularly sampled and partially observable. Some methods have been proposed to estimate the hidden dynamics between intervals like Neural ODE or Exponential decay dynamic function and combine with RNN to estimate the evolution. However, it is difficult for these methods to capture the spatial and temporal dependencies existing within graph-structured time-series data and take full advantage of the available relational information to impute missing data and predict the future states. Besides, traditional RNN-based methods leverage shared RNN cell to update the hidden state which does not capture the impact of various intervals and missing state information on the reliability of estimating the hidden state. To solve this problem, in this paper, we propose a method embedding Graph Neural ODE with reliability and time-aware mechanism which can capture the spatial and temporal dependencies in irregularly sampled and partially observable time-series data to reconstruct the dynamics. Also, a loss function is designed considering the reliability of the augment data from the above proposed method to make further prediction. The proposed method has been validated in experiments of different networked dynamical systems.
Abstract:Over-the-Air Federated Learning (OTA-FL) has been extensively investigated as a privacy-preserving distributed learning mechanism. Realistic systems will see FL clients with diverse size, weight, and power configurations. A critical research gap in existing OTA-FL research is the assumption of homogeneous client computational bit precision. Indeed, many clients may exploit approximate computing (AxC) where bit precisions are adjusted for energy and computational efficiency. The dynamic distribution of bit precision updates amongst FL clients poses an open challenge for OTA-FL, as is is incompatible in the wireless modulation superposition space. Here, we propose an AxC-based OTA-FL framework of clients with multiple precisions, demonstrating the following innovations: (i) optimize the quantization-performance trade-off for both server and clients within the constraints of varying edge computing capabilities and learning accuracy requirements, and (ii) develop heterogeneous gradient resolution OTA-FL modulation schemes to ensure compatibility with physical layer OTA aggregation. Our findings indicate that we can design modulation schemes that enable AxC based OTA-FL, which can achieve 50\% faster and smoother server convergence and a performance enhancement for the lowest precision clients compared to a homogeneous precision approach. This demonstrates the great potential of our AxC-based OTA-FL approach in heterogeneous edge computing environments.
Abstract:Nowadays, large-scale foundation models are being increasingly integrated into numerous safety-critical applications, including human-autonomy teaming (HAT) within transportation, medical, and defence domains. Consequently, the inherent 'black-box' nature of these sophisticated deep neural networks heightens the significance of fostering mutual understanding and trust between humans and autonomous systems. To tackle the transparency challenges in HAT, this paper conducts a thoughtful study on the underexplored domain of Explainable Interface (EI) in HAT systems from a human-centric perspective, thereby enriching the existing body of research in Explainable Artificial Intelligence (XAI). We explore the design, development, and evaluation of EI within XAI-enhanced HAT systems. To do so, we first clarify the distinctions between these concepts: EI, explanations and model explainability, aiming to provide researchers and practitioners with a structured understanding. Second, we contribute to a novel framework for EI, addressing the unique challenges in HAT. Last, our summarized evaluation framework for ongoing EI offers a holistic perspective, encompassing model performance, human-centered factors, and group task objectives. Based on extensive surveys across XAI, HAT, psychology, and Human-Computer Interaction (HCI), this review offers multiple novel insights into incorporating XAI into HAT systems and outlines future directions.
Abstract:Strong structural controllability (SSC) guarantees networked system with linear-invariant dynamics controllable for all numerical realizations of parameters. Current research has established algebraic and graph-theoretic conditions of SSC for zero/nonzero or zero/nonzero/arbitrary structure. One relevant practical problem is how to fully control the system with the minimal number of input signals and identify which nodes must be imposed signals. Previous work shows that this optimization problem is NP-hard and it is difficult to find the solution. To solve this problem, we formulate the graph coloring process as a Markov decision process (MDP) according to the graph-theoretical condition of SSC for both zero/nonzero and zero/nonzero/arbitrary structure. We use Actor-critic method with Directed graph neural network which represents the color information of graph to optimize MDP. Our method is validated in a social influence network with real data and different complex network models. We find that the number of input nodes is determined by the average degree of the network and the input nodes tend to select nodes with low in-degree and avoid high-degree nodes.
Abstract:The development of reconfigurable intelligent surfaces (RIS) is a double-edged sword to physical layer security (PLS). Whilst a legitimate RIS can yield beneficial impacts including increased channel randomness to enhance physical layer secret key generation (PL-SKG), malicious RIS can poison legitimate channels and crack most of existing PL-SKGs. In this work, we propose an adversarial learning framework between legitimate parties (namely Alice and Bob) to address this Man-in-the-middle malicious RIS (MITM-RIS) eavesdropping. First, the theoretical mutual information gap between legitimate pairs and MITM-RIS is deduced. Then, Alice and Bob leverage generative adversarial networks (GANs) to learn to achieve a common feature surface that does not have mutual information overlap with MITM-RIS. Next, we aid signal processing interpretation of black-box neural networks by using a symbolic explainable AI (xAI) representation. These symbolic terms of dominant neurons aid feature engineering-based validation and future design of PLS common feature space. Simulation results show that our proposed GAN-based and symbolic-based PL-SKGs can achieve high key agreement rates between legitimate users, and is even resistant to MITM-RIS Eve with the knowledge of legitimate feature generation (NNs or formulas). This therefore paves the way to secure wireless communications with untrusted reflective devices in future 6G.
Abstract:Deep Learning (DL) is penetrating into a diverse range of mass mobility, smart living, and industrial applications, rapidly transforming the way we live and work. DL is at the heart of many AI implementations. A key set of challenges is to produce AI modules that are: (1) "circular" - can solve new tasks without forgetting how to solve previous ones, (2) "secure" - have immunity to adversarial data attacks, and (3) "tiny" - implementable in low power low cost embedded hardware. Clearly it is difficult to achieve all three aspects on a single horizontal layer of platforms, as the techniques require transformed deep representations that incur different computation and communication requirements. Here we set out the vision to achieve transformed DL representations across a 5G and Beyond networked architecture. We first detail the cross-sectoral motivations for each challenge area, before demonstrating recent advances in DL research that can achieve circular, secure, and tiny AI (CST-AI). Recognising the conflicting demand of each transformed deep representation, we federate their deep learning transformations and functionalities across the network to achieve connected run-time capabilities.
Abstract:This study introduces an innovative violence detection framework tailored to the unique requirements of smart airports, where prompt responses to violent situations are crucial. The proposed framework harnesses the power of ViTPose for human pose estimation. It employs a CNN - BiLSTM network to analyse spatial and temporal information within keypoints sequences, enabling the accurate classification of violent behaviour in real time. Seamlessly integrated within the SAFE (Situational Awareness for Enhanced Security framework of SAAB, the solution underwent integrated testing to ensure robust performance in real world scenarios. The AIRTLab dataset, characterized by its high video quality and relevance to surveillance scenarios, is utilized in this study to enhance the model's accuracy and mitigate false positives. As airports face increased foot traffic in the post pandemic era, implementing AI driven violence detection systems, such as the one proposed, is paramount for improving security, expediting response times, and promoting data informed decision making. The implementation of this framework not only diminishes the probability of violent events but also assists surveillance teams in effectively addressing potential threats, ultimately fostering a more secure and protected aviation sector. Codes are available at: https://github.com/Asami-1/GDP.
Abstract:Internet-of-Things (IoT) devices are often used to transmit physical sensor data over digital wireless channels. Traditional Physical Layer Security (PLS)-based cryptography approaches rely on accurate channel estimation and information exchange for key generation, which irrevocably ties key quality with digital channel estimation quality. Recently, we proposed a new concept called Graph Layer Security (GLS), where digital keys are derived from physical sensor readings. The sensor readings between legitimate users are correlated through a common background infrastructure environment (e.g., a common water distribution network or electric grid). The challenge for GLS has been how to achieve distributed key generation. This paper presents a Federated multi-agent Deep reinforcement learning-assisted Distributed Key generation scheme (FD2K), which fully exploits the common features of physical dynamics to establish secret key between legitimate users. We present for the first time initial experimental results of GLS with federated learning, achieving considerable security performance in terms of key agreement rate (KAR), and key randomness.