Abstract:Safe exploration aims at addressing the limitations of Reinforcement Learning (RL) in safety-critical scenarios, where failures during trial-and-error learning may incur high costs. Several methods exist to incorporate external knowledge or to use proximal sensor data to limit the exploration of unsafe states. However, reducing exploration risks in unknown environments, where an agent must discover safety threats during exploration, remains challenging. In this paper, we target the problem of safe exploration by guiding the training with counterexamples of the safety requirement. Our method abstracts both continuous and discrete state-space systems into compact abstract models representing the safety-relevant knowledge acquired by the agent during exploration. We then exploit probabilistic counterexample generation to construct minimal simulation submodels eliciting safety requirement violations, where the agent can efficiently train offline to refine its policy towards minimising the risk of safety violations during the subsequent online exploration. We demonstrate our method's effectiveness in reducing safety violations during online exploration in preliminary experiments by an average of 40.3% compared with QL and DQN standard algorithms and 29.1% compared with previous related work, while achieving comparable cumulative rewards with respect to unrestricted exploration and alternative approaches.
Abstract:Signature verification, as a crucial practical documentation analysis task, has been continuously studied by researchers in machine learning and pattern recognition fields. In specific scenarios like confirming financial documents and legal instruments, ensuring the absolute reliability of signatures is of top priority. In this work, we proposed a new method to learn "top-rank pairs" for writer-independent offline signature verification tasks. By this scheme, it is possible to maximize the number of absolutely reliable signatures. More precisely, our method to learn top-rank pairs aims at pushing positive samples beyond negative samples, after pairing each of them with a genuine reference signature. In the experiment, BHSig-B and BHSig-H datasets are used for evaluation, on which the proposed model achieves overwhelming better pos@top (the ratio of absolute top positive samples to all of the positive samples) while showing encouraging performance on both Area Under the Curve (AUC) and accuracy.
Abstract:In this paper, we propose an optimal rejection method for rejecting ambiguous samples by a rejection function. This rejection function is trained together with a classification function under the framework of Learning-with-Rejection (LwR). The highlights of LwR are: (1) the rejection strategy is not heuristic but has a strong background from a machine learning theory, and (2) the rejection function can be trained on an arbitrary feature space which is different from the feature space for classification. The latter suggests we can choose a feature space that is more suitable for rejection. Although the past research on LwR focused only on its theoretical aspect, we propose to utilize LwR for practical pattern classification tasks. Moreover, we propose to use features from different CNN layers for classification and rejection. Our extensive experiments of notMNIST classification and character/non-character classification demonstrate that the proposed method achieves better performance than traditional rejection strategies.