Abstract:We propose to meta-learn an a self-supervised patient trajectory forecast learning rule by meta-training on a meta-objective that directly optimizes the utility of the patient representation over the subsequent clinical outcome prediction. This meta-objective directly targets the usefulness of a representation generated from unlabeled clinical measurement forecast for later supervised tasks. The meta-learned can then be directly used in target risk prediction, and the limited available samples can be used for further fine-tuning the model performance. The effectiveness of our approach is tested on a real open source patient EHR dataset MIMIC-III. We are able to demonstrate that our attention-based patient state representation approach can achieve much better performance for predicting target risk with low resources comparing with both direct supervised learning and pretraining with all-observation trajectory forecast.
Abstract:Recurrent Neural Networks (RNNs) are often used for sequential modeling of adverse outcomes in electronic health records (EHRs) due to their ability to encode past clinical states. These deep, recurrent architectures have displayed increased performance compared to other modeling approaches in a number of tasks, fueling the interest in deploying deep models in clinical settings. One of the key elements in ensuring safe model deployment and building user trust is model explainability. Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations by comparing high-level concepts to the network's gradients. While the technique has shown promising results in real-world imaging applications, it has not been applied to structured temporal inputs. To enable an application of TCAV to sequential predictions in the EHR, we propose an extension of the method to time series data. We evaluate the proposed approach on an open EHR benchmark from the intensive care unit, as well as synthetic data where we are able to better isolate individual effects.