Abstract:The vision-language tracking task aims to perform object tracking based on various modality references. Existing Transformer-based vision-language tracking methods have made remarkable progress by leveraging the global modeling ability of self-attention. However, current approaches still face challenges in effectively exploiting the temporal information and dynamically updating reference features during tracking. Recently, the State Space Model (SSM), known as Mamba, has shown astonishing ability in efficient long-sequence modeling. Particularly, its state space evolving process demonstrates promising capabilities in memorizing multimodal temporal information with linear complexity. Witnessing its success, we propose a Mamba-based vision-language tracking model to exploit its state space evolving ability in temporal space for robust multimodal tracking, dubbed MambaVLT. In particular, our approach mainly integrates a time-evolving hybrid state space block and a selective locality enhancement block, to capture contextual information for multimodal modeling and adaptive reference feature update. Besides, we introduce a modality-selection module that dynamically adjusts the weighting between visual and language references, mitigating potential ambiguities from either reference type. Extensive experimental results show that our method performs favorably against state-of-the-art trackers across diverse benchmarks.
Abstract:The crux of Referring Video Object Segmentation (RVOS) lies in modeling dense text-video relations to associate abstract linguistic concepts with dynamic visual contents at pixel-level. Current RVOS methods typically use vision and language models pre-trained independently as backbones. As images and texts are mapped to uncoupled feature spaces, they face the arduous task of learning Vision-Language~(VL) relation modeling from scratch. Witnessing the success of Vision-Language Pre-trained (VLP) models, we propose to learn relation modeling for RVOS based on their aligned VL feature space. Nevertheless, transferring VLP models to RVOS is a deceptively challenging task due to the substantial gap between the pre-training task (image/region-level prediction) and the RVOS task (pixel-level prediction in videos). In this work, we introduce a framework named VLP-RVOS to address this transfer challenge. We first propose a temporal-aware prompt-tuning method, which not only adapts pre-trained representations for pixel-level prediction but also empowers the vision encoder to model temporal clues. We further propose to perform multi-stage VL relation modeling while and after feature extraction for comprehensive VL understanding. Besides, we customize a cube-frame attention mechanism for spatial-temporal reasoning. Extensive experiments demonstrate that our method outperforms state-of-the-art algorithms and exhibits strong generalization abilities.
Abstract:Event Stream Super-Resolution (ESR) aims to address the challenge of insufficient spatial resolution in event streams, which holds great significance for the application of event cameras in complex scenarios. Previous works for ESR often process positive and negative events in a mixed paradigm. This paradigm limits their ability to effectively model the unique characteristics of each event and mutually refine each other by considering their correlations. In this paper, we propose a bilateral event mining and complementary network (BMCNet) to fully leverage the potential of each event and capture the shared information to complement each other simultaneously. Specifically, we resort to a two-stream network to accomplish comprehensive mining of each type of events individually. To facilitate the exchange of information between two streams, we propose a bilateral information exchange (BIE) module. This module is layer-wisely embedded between two streams, enabling the effective propagation of hierarchical global information while alleviating the impact of invalid information brought by inherent characteristics of events. The experimental results demonstrate that our approach outperforms the previous state-of-the-art methods in ESR, achieving performance improvements of over 11\% on both real and synthetic datasets. Moreover, our method significantly enhances the performance of event-based downstream tasks such as object recognition and video reconstruction. Our code is available at https://github.com/Lqm26/BMCNet-ESR.
Abstract:With the advancement of AIGC, video frame interpolation (VFI) has become a crucial component in existing video generation frameworks, attracting widespread research interest. For the VFI task, the motion estimation between neighboring frames plays a crucial role in avoiding motion ambiguity. However, existing VFI methods always struggle to accurately predict the motion information between consecutive frames, and this imprecise estimation leads to blurred and visually incoherent interpolated frames. In this paper, we propose a novel diffusion framework, motion-aware latent diffusion models (MADiff), which is specifically designed for the VFI task. By incorporating motion priors between the conditional neighboring frames with the target interpolated frame predicted throughout the diffusion sampling procedure, MADiff progressively refines the intermediate outcomes, culminating in generating both visually smooth and realistic results. Extensive experiments conducted on benchmark datasets demonstrate that our method achieves state-of-the-art performance significantly outperforming existing approaches, especially under challenging scenarios involving dynamic textures with complex motion.
Abstract:Existing tracking methods mainly focus on learning better target representation or developing more robust prediction models to improve tracking performance. While tracking performance has significantly improved, the target loss issue occurs frequently due to tracking failures, complete occlusion, or out-of-view situations. However, considerably less attention is paid to the self-recovery issue of tracking methods, which is crucial for practical applications. To this end, we propose a recoverable tracking framework, RTracker, that uses a tree-structured memory to dynamically associate a tracker and a detector to enable self-recovery ability. Specifically, we propose a Positive-Negative Tree-structured memory to chronologically store and maintain positive and negative target samples. Upon the PN tree memory, we develop corresponding walking rules for determining the state of the target and define a set of control flows to unite the tracker and the detector in different tracking scenarios. Our core idea is to use the support samples of positive and negative target categories to establish a relative distance-based criterion for a reliable assessment of target loss. The favorable performance in comparison against the state-of-the-art methods on numerous challenging benchmarks demonstrates the effectiveness of the proposed algorithm.
Abstract:3D single object tracking remains a challenging problem due to the sparsity and incompleteness of the point clouds. Existing algorithms attempt to address the challenges in two strategies. The first strategy is to learn dense geometric features based on the captured sparse point cloud. Nevertheless, it is quite a formidable task since the learned dense geometric features are with high uncertainty for depicting the shape of the target object. The other strategy is to aggregate the sparse geometric features of multiple templates to enrich the shape information, which is a routine solution in 2D tracking. However, aggregating the coarse shape representations can hardly yield a precise shape representation. Different from 2D pixels, 3D points of different frames can be directly fused by coordinate transform, i.e., shape completion. Considering that, we propose to construct a synthetic target representation composed of dense and complete point clouds depicting the target shape precisely by shape completion for robust 3D tracking. Specifically, we design a voxelized 3D tracking framework with shape completion, in which we propose a quality-aware shape completion mechanism to alleviate the adverse effect of noisy historical predictions. It enables us to effectively construct and leverage the synthetic target representation. Besides, we also develop a voxelized relation modeling module and box refinement module to improve tracking performance. Favorable performance against state-of-the-art algorithms on three benchmarks demonstrates the effectiveness and generalization ability of our method.
Abstract:RGB-Thermal (RGB-T) semantic segmentation has shown great potential in handling low-light conditions where RGB-based segmentation is hindered by poor RGB imaging quality. The key to RGB-T semantic segmentation is to effectively leverage the complementarity nature of RGB and thermal images. Most existing algorithms fuse RGB and thermal information in feature space via concatenation, element-wise summation, or attention operations in either unidirectional enhancement or bidirectional aggregation manners. However, they usually overlook the modality gap between RGB and thermal images during feature fusion, resulting in modality-specific information from one modality contaminating the other. In this paper, we propose a Channel and Spatial Relation-Propagation Network (CSRPNet) for RGB-T semantic segmentation, which propagates only modality-shared information across different modalities and alleviates the modality-specific information contamination issue. Our CSRPNet first performs relation-propagation in channel and spatial dimensions to capture the modality-shared features from the RGB and thermal features. CSRPNet then aggregates the modality-shared features captured from one modality with the input feature from the other modality to enhance the input feature without the contamination issue. While being fused together, the enhanced RGB and thermal features will be also fed into the subsequent RGB or thermal feature extraction layers for interactive feature fusion, respectively. We also introduce a dual-path cascaded feature refinement module that aggregates multi-layer features to produce two refined features for semantic and boundary prediction. Extensive experimental results demonstrate that CSRPNet performs favorably against state-of-the-art algorithms.
Abstract:RGB-Thermal (RGB-T) pedestrian detection aims to locate the pedestrians in RGB-T image pairs to exploit the complementation between the two modalities for improving detection robustness in extreme conditions. Most existing algorithms assume that the RGB-T image pairs are well registered, while in the real world they are not aligned ideally due to parallax or different field-of-view of the cameras. The pedestrians in misaligned image pairs may locate at different positions in two images, which results in two challenges: 1) how to achieve inter-modality complementation using spatially misaligned RGB-T pedestrian patches, and 2) how to recognize the unpaired pedestrians at the boundary. To deal with these issues, we propose a new paradigm for unregistered RGB-T pedestrian detection, which predicts two separate pedestrian locations in the RGB and thermal images, respectively. Specifically, we propose a cross-modality proposal-guided feature mining (CPFM) mechanism to extract the two precise fusion features for representing the pedestrian in the two modalities, even if the RGB-T image pair is unaligned. It enables us to effectively exploit the complementation between the two modalities. With the CPFM mechanism, we build a two-stream dense detector; it predicts the two pedestrian locations in the two modalities based on the corresponding fusion feature mined by the CPFM mechanism. Besides, we design a data augmentation method, named Homography, to simulate the discrepancy in scales and views between images. We also investigate two non-maximum suppression (NMS) methods for post-processing. Favorable experimental results demonstrate the effectiveness and robustness of our method in dealing with unregistered pedestrians with different shifts.
Abstract:This paper aims to solve the video object segmentation (VOS) task in a scribble-supervised manner, in which VOS models are not only trained by the sparse scribble annotations but also initialized with the sparse target scribbles for inference. Thus, the annotation burdens for both training and initialization can be substantially lightened. The difficulties of scribble-supervised VOS lie in two aspects. On the one hand, it requires the powerful ability to learn from the sparse scribble annotations during training. On the other hand, it demands strong reasoning capability during inference given only a sparse initial target scribble. In this work, we propose a Reliability-Hierarchical Memory Network (RHMNet) to predict the target mask in a step-wise expanding strategy w.r.t. the memory reliability level. To be specific, RHMNet first only uses the memory in the high-reliability level to locate the region with high reliability belonging to the target, which is highly similar to the initial target scribble. Then it expands the located high-reliability region to the entire target conditioned on the region itself and the memories in all reliability levels. Besides, we propose a scribble-supervised learning mechanism to facilitate the learning of our model to predict dense results. It mines the pixel-level relation within the single frame and the frame-level relation within the sequence to take full advantage of the scribble annotations in sequence training samples. The favorable performance on two popular benchmarks demonstrates that our method is promising.
Abstract:Tracking by natural language specification aims to locate the referred target in a sequence based on the natural language description. Existing algorithms solve this issue in two steps, visual grounding and tracking, and accordingly deploy the separated grounding model and tracking model to implement these two steps, respectively. Such a separated framework overlooks the link between visual grounding and tracking, which is that the natural language descriptions provide global semantic cues for localizing the target for both two steps. Besides, the separated framework can hardly be trained end-to-end. To handle these issues, we propose a joint visual grounding and tracking framework, which reformulates grounding and tracking as a unified task: localizing the referred target based on the given visual-language references. Specifically, we propose a multi-source relation modeling module to effectively build the relation between the visual-language references and the test image. In addition, we design a temporal modeling module to provide a temporal clue with the guidance of the global semantic information for our model, which effectively improves the adaptability to the appearance variations of the target. Extensive experimental results on TNL2K, LaSOT, OTB99, and RefCOCOg demonstrate that our method performs favorably against state-of-the-art algorithms for both tracking and grounding. Code is available at https://github.com/lizhou-cs/JointNLT.