Abstract:Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
Abstract:This paper presents TexRO, a novel method for generating delicate textures of a known 3D mesh by optimizing its UV texture. The key contributions are two-fold. We propose an optimal viewpoint selection strategy, that finds the most miniature set of viewpoints covering all the faces of a mesh. Our viewpoint selection strategy guarantees the completeness of a generated result. We propose a recursive optimization pipeline that optimizes a UV texture at increasing resolutions, with an adaptive denoising method that re-uses existing textures for new texture generation. Through extensive experimentation, we demonstrate the superior performance of TexRO in terms of texture quality, detail preservation, visual consistency, and, notably runtime speed, outperforming other current methods. The broad applicability of TexRO is further confirmed through its successful use on diverse 3D models.
Abstract:This paper presents GEA, a novel method for creating expressive 3D avatars with high-fidelity reconstructions of body and hands based on 3D Gaussians. The key contributions are twofold. First, we design a two-stage pose estimation method to obtain an accurate SMPL-X pose from input images, providing a correct mapping between the pixels of a training image and the SMPL-X model. It uses an attention-aware network and an optimization scheme to align the normal and silhouette between the estimated SMPL-X body and the real body in the image. Second, we propose an iterative re-initialization strategy to handle unbalanced aggregation and initialization bias faced by Gaussian representation. This strategy iteratively redistributes the avatar's Gaussian points, making it evenly distributed near the human body surface by applying meshing, resampling and re-Gaussian operations. As a result, higher-quality rendering can be achieved. Extensive experimental analyses validate the effectiveness of the proposed model, demonstrating that it achieves state-of-the-art performance in photorealistic novel view synthesis while offering fine-grained control over the human body and hand pose. Project page: https://3d-aigc.github.io/GEA/.