Abstract:Foundation Models (FMs) serve as a general class for the development of artificial intelligence systems, offering broad potential for generalization across a spectrum of downstream tasks. Despite extensive research into self-supervised learning as the cornerstone of FMs, several outstanding issues persist in Graph Foundation Models that rely on graph self-supervised learning, namely: 1) Homogenization. The extent of generalization capability on downstream tasks remains unclear. 2) Scalability. It is unknown how effectively these models can scale to large datasets. 3) Efficiency. The training time and memory usage of these models require evaluation. 4) Training Stop Criteria. Determining the optimal stopping strategy for pre-training across multiple tasks to maximize performance on downstream tasks. To address these questions, we have constructed a rigorous benchmark that thoroughly analyzes and studies the generalization and scalability of self-supervised Graph Neural Network (GNN) models. Regarding generalization, we have implemented and compared the performance of various self-supervised GNN models, trained to generate node representations, across tasks such as node classification, link prediction, and node clustering. For scalability, we have compared the performance of various models after training using full-batch and mini-batch strategies. Additionally, we have assessed the training efficiency of these models by conducting experiments to test their GPU memory usage and throughput. Through these experiments, we aim to provide insights to motivate future research. The code for this benchmark is publicly available at https://github.com/NYUSHCS/GraphFM.
Abstract:We propose Magic Clothing, a latent diffusion model (LDM)-based network architecture for an unexplored garment-driven image synthesis task. Aiming at generating customized characters wearing the target garments with diverse text prompts, the image controllability is the most critical issue, i.e., to preserve the garment details and maintain faithfulness to the text prompts. To this end, we introduce a garment extractor to capture the detailed garment features, and employ self-attention fusion to incorporate them into the pretrained LDMs, ensuring that the garment details remain unchanged on the target character. Then, we leverage the joint classifier-free guidance to balance the control of garment features and text prompts over the generated results. Meanwhile, the proposed garment extractor is a plug-in module applicable to various finetuned LDMs, and it can be combined with other extensions like ControlNet and IP-Adapter to enhance the diversity and controllability of the generated characters. Furthermore, we design Matched-Points-LPIPS (MP-LPIPS), a robust metric for evaluating the consistency of the target image to the source garment. Extensive experiments demonstrate that our Magic Clothing achieves state-of-the-art results under various conditional controls for garment-driven image synthesis. Our source code is available at https://github.com/ShineChen1024/MagicClothing.
Abstract:We present OOTDiffusion, a novel network architecture for realistic and controllable image-based virtual try-on (VTON). We leverage the power of pretrained latent diffusion models, designing an outfitting UNet to learn the garment detail features. Without a redundant warping process, the garment features are precisely aligned with the target human body via the proposed outfitting fusion in the self-attention layers of the denoising UNet. In order to further enhance the controllability, we introduce outfitting dropout to the training process, which enables us to adjust the strength of the garment features through classifier-free guidance. Our comprehensive experiments on the VITON-HD and Dress Code datasets demonstrate that OOTDiffusion efficiently generates high-quality try-on results for arbitrary human and garment images, which outperforms other VTON methods in both realism and controllability, indicating an impressive breakthrough in virtual try-on. Our source code is available at https://github.com/levihsu/OOTDiffusion.
Abstract:Deep SORT\cite{wojke2017simple} is a tracking-by-detetion approach to multiple object tracking with a detector and a RE-ID model. Both separately training and inference with the two model is time-comsuming. In this paper, we unify the detector and RE-ID model into an end-to-end network, by adding an additional track branch for tracking in Faster RCNN architecture. With a unified network, we are able to train the whole model end-to-end with multi loss, which has shown much benefit in other recent works. The RE-ID model in Deep SORT needs to use deep CNNs to extract feature map from detected object images, However, track branch in our proposed network straight make use of the RoI feature vector in Faster RCNN baseline, which reduced the amount of calculation. Since the single image lacks the same object which is necessary when we use the triplet loss to optimizer the track branch, we concatenate the neighbouring frames in a video to construct our training dataset. We have trained and evaluated our model on AIC19 vehicle tracking dataset, experiment shows that our model with resnet101 backbone can achieve 57.79 \% mAP and track vehicle well.