https://3d-aigc.github.io/GEA/.
This paper presents GEA, a novel method for creating expressive 3D avatars with high-fidelity reconstructions of body and hands based on 3D Gaussians. The key contributions are twofold. First, we design a two-stage pose estimation method to obtain an accurate SMPL-X pose from input images, providing a correct mapping between the pixels of a training image and the SMPL-X model. It uses an attention-aware network and an optimization scheme to align the normal and silhouette between the estimated SMPL-X body and the real body in the image. Second, we propose an iterative re-initialization strategy to handle unbalanced aggregation and initialization bias faced by Gaussian representation. This strategy iteratively redistributes the avatar's Gaussian points, making it evenly distributed near the human body surface by applying meshing, resampling and re-Gaussian operations. As a result, higher-quality rendering can be achieved. Extensive experimental analyses validate the effectiveness of the proposed model, demonstrating that it achieves state-of-the-art performance in photorealistic novel view synthesis while offering fine-grained control over the human body and hand pose. Project page: