Abstract:The concept of negative prompts, emerging from conditional generation models like Stable Diffusion, allows users to specify what to exclude from the generated images.%, demonstrating significant practical efficacy. Despite the widespread use of negative prompts, their intrinsic mechanisms remain largely unexplored. This paper presents the first comprehensive study to uncover how and when negative prompts take effect. Our extensive empirical analysis identifies two primary behaviors of negative prompts. Delayed Effect: The impact of negative prompts is observed after positive prompts render corresponding content. Deletion Through Neutralization: Negative prompts delete concepts from the generated image through a mutual cancellation effect in latent space with positive prompts. These insights reveal significant potential real-world applications; for example, we demonstrate that negative prompts can facilitate object inpainting with minimal alterations to the background via a simple adaptive algorithm. We believe our findings will offer valuable insights for the community in capitalizing on the potential of negative prompts.
Abstract:Diffusion models have achieved remarkable success in text-to-image generation tasks; however, the role of initial noise has been rarely explored. In this study, we identify specific regions within the initial noise image, termed trigger patches, that play a key role for object generation in the resulting images. Notably, these patches are ``universal'' and can be generalized across various positions, seeds, and prompts. To be specific, extracting these patches from one noise and injecting them into another noise leads to object generation in targeted areas. We identify these patches by analyzing the dispersion of object bounding boxes across generated images, leading to the development of a posterior analysis technique. Furthermore, we create a dataset consisting of Gaussian noises labeled with bounding boxes corresponding to the objects appearing in the generated images and train a detector that identifies these patches from the initial noise. To explain the formation of these patches, we reveal that they are outliers in Gaussian noise, and follow distinct distributions through two-sample tests. Finally, we find the misalignment between prompts and the trigger patch patterns can result in unsuccessful image generations. The study proposes a reject-sampling strategy to obtain optimal noise, aiming to improve prompt adherence and positional diversity in image generation.
Abstract:Self-supervised pre-training has drawn increasing attention in recent years due to its superior performance on numerous downstream tasks after fine-tuning. However, it is well-known that deep learning models lack the robustness to adversarial examples, which can also invoke security issues to pre-trained models, despite being less explored. In this paper, we delve into the robustness of pre-trained models by introducing Pre-trained Adversarial Perturbations (PAPs), which are universal perturbations crafted for the pre-trained models to maintain the effectiveness when attacking fine-tuned ones without any knowledge of the downstream tasks. To this end, we propose a Low-Level Layer Lifting Attack (L4A) method to generate effective PAPs by lifting the neuron activations of low-level layers of the pre-trained models. Equipped with an enhanced noise augmentation strategy, L4A is effective at generating more transferable PAPs against fine-tuned models. Extensive experiments on typical pre-trained vision models and ten downstream tasks demonstrate that our method improves the attack success rate by a large margin compared with state-of-the-art methods.