Abstract:Cervical disc herniation (CDH) is a prevalent musculoskeletal disorder that significantly impacts health and requires labor-intensive analysis from experts. Despite advancements in automated detection of medical imaging, two significant challenges hinder the real-world application of these methods. First, the computational complexity and resource demands present a significant gap for real-time application. Second, noise in MRI reduces the effectiveness of existing methods by distorting feature extraction. To address these challenges, we propose three key contributions: Firstly, we introduced MedDet, which leverages the multi-teacher single-student knowledge distillation for model compression and efficiency, meanwhile integrating generative adversarial training to enhance performance. Additionally, we customize the second-order nmODE to improve the model's resistance to noise in MRI. Lastly, we conducted comprehensive experiments on the CDH-1848 dataset, achieving up to a 5% improvement in mAP compared to previous methods. Our approach also delivers over 5 times faster inference speed, with approximately 67.8% reduction in parameters and 36.9% reduction in FLOPs compared to the teacher model. These advancements significantly enhance the performance and efficiency of automated CDH detection, demonstrating promising potential for future application in clinical practice. See project website https://steve-zeyu-zhang.github.io/MedDet
Abstract:In recent years, employing layer attention to enhance interaction among hierarchical layers has proven to be a significant advancement in building network structures. In this paper, we delve into the distinction between layer attention and the general attention mechanism, noting that existing layer attention methods achieve layer interaction on fixed feature maps in a static manner. These static layer attention methods limit the ability for context feature extraction among layers. To restore the dynamic context representation capability of the attention mechanism, we propose a Dynamic Layer Attention (DLA) architecture. The DLA comprises dual paths, where the forward path utilizes an improved recurrent neural network block, named Dynamic Sharing Unit (DSU), for context feature extraction. The backward path updates features using these shared context representations. Finally, the attention mechanism is applied to these dynamically refreshed feature maps among layers. Experimental results demonstrate the effectiveness of the proposed DLA architecture, outperforming other state-of-the-art methods in image recognition and object detection tasks. Additionally, the DSU block has been evaluated as an efficient plugin in the proposed DLA architecture.The code is available at https://github.com/tunantu/Dynamic-Layer-Attention.
Abstract:Glass largely blurs the boundary between the real world and the reflection. The special transmittance and reflectance quality have confused the semantic tasks related to machine vision. Therefore, how to clear the boundary built by glass, and avoid over-capturing features as false positive information in deep structure, matters for constraining the segmentation of reflection surface and penetrating glass. We proposed the Fourier Boundary Features Network with Wider Catchers (FBWC), which might be the first attempt to utilize sufficiently wide horizontal shallow branches without vertical deepening for guiding the fine granularity segmentation boundary through primary glass semantic information. Specifically, we designed the Wider Coarse-Catchers (WCC) for anchoring large area segmentation and reducing excessive extraction from a structural perspective. We embed fine-grained features by Cross Transpose Attention (CTA), which is introduced to avoid the incomplete area within the boundary caused by reflection noise. For excavating glass features and balancing high-low layers context, a learnable Fourier Convolution Controller (FCC) is proposed to regulate information integration robustly. The proposed method has been validated on three different public glass segmentation datasets. Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art (SOTA) methods in glass image segmentation.
Abstract:In recent years, deep dictionary learning (DDL)has attracted a great amount of attention due to its effectiveness for representation learning and visual recognition.~However, most existing methods focus on unsupervised deep dictionary learning, failing to further explore the category information.~To make full use of the category information of different samples, we propose a novel deep dictionary learning model with an intra-class constraint (DDLIC) for visual classification. Specifically, we design the intra-class compactness constraint on the intermediate representation at different levels to encourage the intra-class representations to be closer to each other, and eventually the learned representation becomes more discriminative.~Unlike the traditional DDL methods, during the classification stage, our DDLIC performs a layer-wise greedy optimization in a similar way to the training stage. Experimental results on four image datasets show that our method is superior to the state-of-the-art methods.
Abstract:The ResNet and its variants have achieved remarkable successes in various computer vision tasks. Despite its success in making gradient flow through building blocks, the simple shortcut connection mechanism limits the ability of re-exploring new potentially complementary features due to the additive function. To address this issue, in this paper, we propose to introduce a regulator module as a memory mechanism to extract complementary features, which are further fed to the ResNet. In particular, the regulator module is composed of convolutional RNNs (e.g., Convolutional LSTMs or Convolutional GRUs), which are shown to be good at extracting Spatio-temporal information. We named the new regulated networks as RegNet. The regulator module can be easily implemented and appended to any ResNet architecture. We also apply the regulator module for improving the Squeeze-and-Excitation ResNet to show the generalization ability of our method. Experimental results on three image classification datasets have demonstrated the promising performance of the proposed architecture compared with the standard ResNet, SE-ResNet, and other state-of-the-art architectures.
Abstract:Inverted Generational Distance (IGD) has been widely considered as a reliable performance indicator to concurrently quantify the convergence and diversity of multi- and many-objective evolutionary algorithms. In this paper, an IGD indicator-based evolutionary algorithm for solving many-objective optimization problems (MaOPs) has been proposed. Specifically, the IGD indicator is employed in each generation to select the solutions with favorable convergence and diversity. In addition, a computationally efficient dominance comparison method is designed to assign the rank values of solutions along with three newly proposed proximity distance assignments. Based on these two designs, the solutions are selected from a global view by linear assignment mechanism to concern the convergence and diversity simultaneously. In order to facilitate the accuracy of the sampled reference points for the calculation of IGD indicator, we also propose an efficient decomposition-based nadir point estimation method for constructing the Utopian Pareto front which is regarded as the best approximate Pareto front for real-world MaOPs at the early stage of the evolution. To evaluate the performance, a series of experiments is performed on the proposed algorithm against a group of selected state-of-the-art many-objective optimization algorithms over optimization problems with $8$-, $15$-, and $20$-objective. Experimental results measured by the chosen performance metrics indicate that the proposed algorithm is very competitive in addressing MaOPs.
Abstract:The performance of multi-objective evolutionary algorithms deteriorates appreciably in solving many-objective optimization problems which encompass more than three objectives. One of the known rationales is the loss of selection pressure which leads to the selected parents not generating promising offspring towards Pareto-optimal front with diversity. Estimation of distribution algorithms sample new solutions with a probabilistic model built from the statistics extracting over the existing solutions so as to mitigate the adverse impact of genetic operators. In this paper, an improved regularity-based estimation of distribution algorithm is proposed to effectively tackle unconstrained many-objective optimization problems. In the proposed algorithm, \emph{diversity repairing mechanism} is utilized to mend the areas where need non-dominated solutions with a closer proximity to the Pareto-optimal front. Then \emph{favorable solutions} are generated by the model built from the regularity of the solutions surrounding a group of representatives. These two steps collectively enhance the selection pressure which gives rise to the superior convergence of the proposed algorithm. In addition, dimension reduction technique is employed in the decision space to speed up the estimation search of the proposed algorithm. Finally, by assigning the Pareto-optimal solutions to the uniformly distributed reference vectors, a set of solutions with excellent diversity and convergence is obtained. To measure the performance, NSGA-III, GrEA, MOEA/D, HypE, MBN-EDA, and RM-MEDA are selected to perform comparison experiments over DTLZ and DTLZ$^-$ test suites with $3$-, $5$-, $8$-, $10$-, and $15$-objective. Experimental results quantified by the selected performance metrics reveal that the proposed algorithm shows considerable competitiveness in addressing unconstrained many-objective optimization problems.
Abstract:Deep Learning (DL) aims at learning the \emph{meaningful representations}. A meaningful representation refers to the one that gives rise to significant performance improvement of associated Machine Learning (ML) tasks by replacing the raw data as the input. However, optimal architecture design and model parameter estimation in DL algorithms are widely considered to be intractable. Evolutionary algorithms are much preferable for complex and non-convex problems due to its inherent characteristics of gradient-free and insensitivity to local optimum. In this paper, we propose a computationally economical algorithm for evolving \emph{unsupervised deep neural networks} to efficiently learn \emph{meaningful representations}, which is very suitable in the current Big Data era where sufficient labeled data for training is often expensive to acquire. In the proposed algorithm, finding an appropriate architecture and the initialized parameter values for a ML task at hand is modeled by one computational efficient gene encoding approach, which is employed to effectively model the task with a large number of parameters. In addition, a local search strategy is incorporated to facilitate the exploitation search for further improving the performance. Furthermore, a small proportion labeled data is utilized during evolution search to guarantee the learnt representations to be meaningful. The performance of the proposed algorithm has been thoroughly investigated over classification tasks. Specifically, error classification rate on MNIST with $1.15\%$ is reached by the proposed algorithm consistently, which is a very promising result against state-of-the-art unsupervised DL algorithms.
Abstract:In this paper, we present a deep extension of Sparse Subspace Clustering, termed Deep Sparse Subspace Clustering (DSSC). Regularized by the unit sphere distribution assumption for the learned deep features, DSSC can infer a new data affinity matrix by simultaneously satisfying the sparsity principle of SSC and the nonlinearity given by neural networks. One of the appealing advantages brought by DSSC is: when original real-world data do not meet the class-specific linear subspace distribution assumption, DSSC can employ neural networks to make the assumption valid with its hierarchical nonlinear transformations. To the best of our knowledge, this is among the first deep learning based subspace clustering methods. Extensive experiments are conducted on four real-world datasets to show the proposed DSSC is significantly superior to 12 existing methods for subspace clustering.
Abstract:It is a key to construct a similarity graph in graph-oriented subspace learning and clustering. In a similarity graph, each vertex denotes a data point and the edge weight represents the similarity between two points. There are two popular schemes to construct a similarity graph, i.e., pairwise distance based scheme and linear representation based scheme. Most existing works have only involved one of the above schemes and suffered from some limitations. Specifically, pairwise distance based methods are sensitive to the noises and outliers compared with linear representation based methods. On the other hand, there is the possibility that linear representation based algorithms wrongly select inter-subspaces points to represent a point, which will degrade the performance. In this paper, we propose an algorithm, called Locally Linear Representation (LLR), which integrates pairwise distance with linear representation together to address the problems. The proposed algorithm can automatically encode each data point over a set of points that not only could denote the objective point with less residual error, but also are close to the point in Euclidean space. The experimental results show that our approach is promising in subspace learning and subspace clustering.