Abstract:Creating a high-fidelity, animatable 3D full-body avatar from a single image is a challenging task due to the diverse appearance and poses of humans and the limited availability of high-quality training data. To achieve fast and high-quality human reconstruction, this work rethinks the task from the perspectives of dataset, model, and representation. First, we introduce a large-scale HUman-centric GEnerated dataset, HuGe100K, consisting of 100K diverse, photorealistic sets of human images. Each set contains 24-view frames in specific human poses, generated using a pose-controllable image-to-multi-view model. Next, leveraging the diversity in views, poses, and appearances within HuGe100K, we develop a scalable feed-forward transformer model to predict a 3D human Gaussian representation in a uniform space from a given human image. This model is trained to disentangle human pose, body shape, clothing geometry, and texture. The estimated Gaussians can be animated without post-processing. We conduct comprehensive experiments to validate the effectiveness of the proposed dataset and method. Our model demonstrates the ability to efficiently reconstruct photorealistic humans at 1K resolution from a single input image using a single GPU instantly. Additionally, it seamlessly supports various applications, as well as shape and texture editing tasks.
Abstract:Text-driven human motion synthesis is capturing significant attention for its ability to effortlessly generate intricate movements from abstract text cues, showcasing its potential for revolutionizing motion design not only in film narratives but also in virtual reality experiences and computer game development. Existing methods often rely on 3D motion capture data, which require special setups resulting in higher costs for data acquisition, ultimately limiting the diversity and scope of human motion. In contrast, 2D human videos offer a vast and accessible source of motion data, covering a wider range of styles and activities. In this paper, we explore leveraging 2D human motion extracted from videos as an alternative data source to improve text-driven 3D motion generation. Our approach introduces a novel framework that disentangles local joint motion from global movements, enabling efficient learning of local motion priors from 2D data. We first train a single-view 2D local motion generator on a large dataset of text-motion pairs. To enhance this model to synthesize 3D motion, we fine-tune the generator with 3D data, transforming it into a multi-view generator that predicts view-consistent local joint motion and root dynamics. Experiments on the HumanML3D dataset and novel text prompts demonstrate that our method efficiently utilizes 2D data, supporting realistic 3D human motion generation and broadening the range of motion types it supports. Our code will be made publicly available at https://zju3dv.github.io/Motion-2-to-3/.
Abstract:The automatic generation of anchor-style product promotion videos presents promising opportunities in online commerce, advertising, and consumer engagement. However, this remains a challenging task despite significant advancements in pose-guided human video generation. In addressing this challenge, we identify the integration of human-object interactions (HOI) into pose-guided human video generation as a core issue. To this end, we introduce AnchorCrafter, a novel diffusion-based system designed to generate 2D videos featuring a target human and a customized object, achieving high visual fidelity and controllable interactions. Specifically, we propose two key innovations: the HOI-appearance perception, which enhances object appearance recognition from arbitrary multi-view perspectives and disentangles object and human appearance, and the HOI-motion injection, which enables complex human-object interactions by overcoming challenges in object trajectory conditioning and inter-occlusion management. Additionally, we introduce the HOI-region reweighting loss, a training objective that enhances the learning of object details. Extensive experiments demonstrate that our proposed system outperforms existing methods in preserving object appearance and shape awareness, while simultaneously maintaining consistency in human appearance and motion. Project page: https://cangcz.github.io/Anchor-Crafter/
Abstract:This paper addresses the challenging task of reconstructing the poses of multiple individuals engaged in close interactions, captured by multiple calibrated cameras. The difficulty arises from the noisy or false 2D keypoint detections due to inter-person occlusion, the heavy ambiguity in associating keypoints to individuals due to the close interactions, and the scarcity of training data as collecting and annotating motion data in crowded scenes is resource-intensive. We introduce a novel system to address these challenges. Our system integrates a learning-based pose estimation component and its corresponding training and inference strategies. The pose estimation component takes multi-view 2D keypoint heatmaps as input and reconstructs the pose of each individual using a 3D conditional volumetric network. As the network doesn't need images as input, we can leverage known camera parameters from test scenes and a large quantity of existing motion capture data to synthesize massive training data that mimics the real data distribution in test scenes. Extensive experiments demonstrate that our approach significantly surpasses previous approaches in terms of pose accuracy and is generalizable across various camera setups and population sizes. The code is available on our project page: https://github.com/zju3dv/CloseMoCap.
Abstract:Recent communities have seen significant progress in building photo-realistic animatable avatars from sparse multi-view videos. However, current workflows struggle to render realistic garment dynamics for loose-fitting characters as they predominantly rely on naked body models for human modeling while leaving the garment part un-modeled. This is mainly due to that the deformations yielded by loose garments are highly non-rigid, and capturing such deformations often requires dense views as supervision. In this paper, we introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos (4-8 in our setting). To allow the capturing and appearance learning of loose garments in such a situation, we employ a virtual bone-based garment rigging model obtained from physics-based simulation data. Such a model allows us to capture and render complex garment dynamics through a set of low-dimensional bone transformations. Technically, we develop a novel method for estimating temporal coherent garment dynamics from a sparse multi-view video. To build a realistic rendering for unseen garment status using coarse estimations, a pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts. At test time, the new garment poses can be captured from unseen situations, derived from a physics-based or neural network-based simulator to drive unseen garment dynamics. To evaluate our approach, we create a multi-view dataset that captures loose-dressed performers with diverse motions. Experiments show that our method is able to render natural garment dynamics that deviate highly from the body and generalize well to both unseen views and poses, surpassing the performance of existing methods. The code and data will be publicly available.
Abstract:Volumetric video is a technology that digitally records dynamic events such as artistic performances, sporting events, and remote conversations. When acquired, such volumography can be viewed from any viewpoint and timestamp on flat screens, 3D displays, or VR headsets, enabling immersive viewing experiences and more flexible content creation in a variety of applications such as sports broadcasting, video conferencing, gaming, and movie productions. With the recent advances and fast-growing interest in neural scene representations for volumetric video, there is an urgent need for a unified open-source library to streamline the process of volumetric video capturing, reconstruction, and rendering for both researchers and non-professional users to develop various algorithms and applications of this emerging technology. In this paper, we present EasyVolcap, a Python & Pytorch library for accelerating neural volumetric video research with the goal of unifying the process of multi-view data processing, 4D scene reconstruction, and efficient dynamic volumetric video rendering. Our source code is available at https://github.com/zju3dv/EasyVolcap.
Abstract:Recently, the editing of neural radiance fields (NeRFs) has gained considerable attention, but most prior works focus on static scenes while research on the appearance editing of dynamic scenes is relatively lacking. In this paper, we propose a novel framework to edit the local appearance of dynamic NeRFs by manipulating pixels in a single frame of training video. Specifically, to locally edit the appearance of dynamic NeRFs while preserving unedited regions, we introduce a local surface representation of the edited region, which can be inserted into and rendered along with the original NeRF and warped to arbitrary other frames through a learned invertible motion representation network. By employing our method, users without professional expertise can easily add desired content to the appearance of a dynamic scene. We extensively evaluate our approach on various scenes and show that our approach achieves spatially and temporally consistent editing results. Notably, our approach is versatile and applicable to different variants of dynamic NeRF representations.
Abstract:We present a novel method for recovering the absolute pose and shape of a human in a pre-scanned scene given a single image. Unlike previous methods that perform sceneaware mesh optimization, we propose to first estimate absolute position and dense scene contacts with a sparse 3D CNN, and later enhance a pretrained human mesh recovery network by cross-attention with the derived 3D scene cues. Joint learning on images and scene geometry enables our method to reduce the ambiguity caused by depth and occlusion, resulting in more reasonable global postures and contacts. Encoding scene-aware cues in the network also allows the proposed method to be optimization-free, and opens up the opportunity for real-time applications. The experiments show that the proposed network is capable of recovering accurate and physically-plausible meshes by a single forward pass and outperforms state-of-the-art methods in terms of both accuracy and speed.
Abstract:This paper introduces a novel representation of volumetric videos for real-time view synthesis of dynamic scenes. Recent advances in neural scene representations demonstrate their remarkable capability to model and render complex static scenes, but extending them to represent dynamic scenes is not straightforward due to their slow rendering speed or high storage cost. To solve this problem, our key idea is to represent the radiance field of each frame as a set of shallow MLP networks whose parameters are stored in 2D grids, called MLP maps, and dynamically predicted by a 2D CNN decoder shared by all frames. Representing 3D scenes with shallow MLPs significantly improves the rendering speed, while dynamically predicting MLP parameters with a shared 2D CNN instead of explicitly storing them leads to low storage cost. Experiments show that the proposed approach achieves state-of-the-art rendering quality on the NHR and ZJU-MoCap datasets, while being efficient for real-time rendering with a speed of 41.7 fps for $512 \times 512$ images on an RTX 3090 GPU. The code is available at https://zju3dv.github.io/mlp_maps/.
Abstract:This paper presents an approach that reconstructs a hand-held object from a monocular video. In contrast to many recent methods that directly predict object geometry by a trained network, the proposed approach does not require any learned prior about the object and is able to recover more accurate and detailed object geometry. The key idea is that the hand motion naturally provides multiple views of the object and the motion can be reliably estimated by a hand pose tracker. Then, the object geometry can be recovered by solving a multi-view reconstruction problem. We devise an implicit neural representation-based method to solve the reconstruction problem and address the issues of imprecise hand pose estimation, relative hand-object motion, and insufficient geometry optimization for small objects. We also provide a newly collected dataset with 3D ground truth to validate the proposed approach.