Abstract:In this work, we propose a framework for single-view hand mesh reconstruction, which can simultaneously achieve high reconstruction accuracy, fast inference speed, and temporal coherence. Specifically, for 2D encoding, we propose lightweight yet effective stacked structures. Regarding 3D decoding, we provide an efficient graph operator, namely depth-separable spiral convolution. Moreover, we present a novel feature lifting module for bridging the gap between 2D and 3D representations. This module starts with a map-based position regression (MapReg) block to integrate the merits of both heatmap encoding and position regression paradigms to improve 2D accuracy and temporal coherence. Furthermore, MapReg is followed by pose pooling and pose-to-vertex lifting approaches, which transform 2D pose encodings to semantic features of 3D vertices. Overall, our hand reconstruction framework, called MobRecon, comprises affordable computational costs and miniature model size, which reaches a high inference speed of 83FPS on Apple A14 CPU. Extensive experiments on popular datasets such as FreiHAND, RHD, and HO3Dv2 demonstrate that our MobRecon achieves superior performance on reconstruction accuracy and temporal coherence. Our code is publicly available at https://github.com/SeanChenxy/HandMesh.
Abstract:This paper proposes an end-to-end deep hashing framework with category mask for fast video retrieval. We train our network in a supervised way by fully exploiting inter-class diversity and intra-class identity. Classification loss is optimized to maximize inter-class diversity, while intra-pair is introduced to learn representative intra-class identity. We investigate the binary bits distribution related to categories and find out that the effectiveness of binary bits is highly correlated with data categories, and some bits may degrade classification performance of some categories. We then design hash code generation scheme with category mask to filter out bits with negative contribution. Experimental results demonstrate the proposed method outperforms several state-of-the-arts under various evaluation metrics on public datasets.